
Bull. Nov. Comp.Center, Comp. Science, 28 (2008), 1–29
c© 2008 NCC Publisher

A three-stage method of C program verification∗

I. S. Anureev

Abstract. A three-stage method of C program verification is presented. It is
a further development of the two-stage method in the framework of the C-light
project. An additional stage of normalization of C-light programs is introduced and
optimization of the two-stage method caused by this introduction is considered.

1. Introduction

The C-light project is being developed in the laboratory of theoretical pro-
gramming of the Institute of Informatics Systems. In the framework of the
C-light project, a two-stage method [1, 2, 3, 4] of C program verification
has been developed. It is applied to a subset C-light of the C language that
has a formal operational semantics [1, 2] and covers a major part of C. At
the first stage, a C-light program is translated into an intermediate language
C-kernel in order to eliminate some C-light constructs, difficult for axiomatic
semantics, as well as to design axiomatic semantics in a more compact and
transparent form [3]. At the second stage, verification conditions are gener-
ated by means of the rules of C-kernel axiomatic semantics [4].

A three-stage method of C program verification presented in this paper is
a further development of the two-stage method. The idea of this development
consists in partial carry of complexity of a program verification problem from
deductive inference to static analysis by introduction of one more stage of
normalization of C-light programs. Reduction of a C-light program to its
normal form is performed by some kind of a static analysis. Application of
the two-stage method to normalized C-light programs allows us to simplify
the C-light machine and, consequently, to optimize the rules of operational
semantics of C-light and axiomatic semantics of C-kernel.

The paper has the following structure. A survey of the C-light language
is given in Section 2. Section 3 presents the abstract machine of C-light.
Operational semantics of C-light is considered in Section 4. An overview of
the C-kernel language is given in Section 5. An annotation language that is
used for description of the properties of states of the C-light machine and
for writing annotations in axiomatic semantics of C-kernel is described in
Section 6. Axiomatic semantics of C-kernel is presented in Section 7.

∗This research is partially supported by RFBR grant 06-01-00464-a.

2 I. S. Anureev

2. Survey of the C-light language

The C-light language is a subset of the standard C99 [5], extended by typed
memory management operators new and delete. Let us consider the restric-
tions imposed on this subset.

Types. Admissible types of C-light are as follows:

• Base types
– integer: _Bool,

i ::= char, int, short [int], long [int], long long int,
τ ::= signed i, unsigned i,

– real floating: float, double, long double,
– empty: void
• Derived types pointers, arrays, structures, enumerations,

functions

Thus complex types and unions are forbidden in C-light.
The following restrictions are imposed on admissible types:

1) The type char is always signed;

2) The values of pointers are noninterpreted constants;

3) Incomplete array types are only admitted as the function argument
types;

4) Bit fields in structures are forbidden;

5) Functions with a variable number of arguments are forbidden;

Declarations. Let us consider the main distinctions of С-light declarations
from C99 declarations. Tentative definitions are forbidden. Abstract decla-
rations of arguments are forbidden. The use of a specifier static in dimension
of an array that is a function parameter is forbidden. All specifiers and qual-
ifiers of types, except for storage class specifiers and specifiers of a sign and
size for scalar types, are forbidden.

Expressions. The order of expression evaluation is fixed in С-light: argu-
ments of operators and functions are evaluated from right to left, initializer
lists are evaluated from left to right. Compound literals are only allowed as
initializers in declarations. A type cast for a compound initializer is forbid-
den. A pointer conversion is restricted by conversion from the type void∗ to
an arbitrary type τ∗.

To manage memory, special typed operators new and delete are used:

A three-stage method of C program verification 3

• new(τ) allocates memory for an object of a type τ and returns an
address of the object;

• delete(c, τ) frees memory from an object of a type τ stored at an
address c.

The C-light language has one semantic restriction. Access to the values
stored at the addresses of program variables beyond their scopes is forbidden.
A program for which this restriction is violated is considered incorrect. In
most cases this restriction can be checked with the help of a static analysis.
Similar context-sensitive conditions are used in the MISRA-C specification.

Statements. There are two restrictions on statements:

1. All case-labels and the label default in the switch statement are at the
same level of nesting, i. e. the following variant is forbidden:

switch(i){
case 1: if(a>0) {case 2: b = 3;}

else {case 3: c = 0;}}

2. Jumping into a block by the goto statement is forbidden.

The source program. The source text of a program is a sequence of
declarations. Preprocessor instructions are forbidden.

3. Abstract machine of the C-light language

Operational semantics of C-light defines execution of C-light programs in
terms of states of an abstract machine called a C-light machine and tran-
sitions from one state to another. A description of the C-light machine
includes:

• a type system that specifies the values handled by the C-light machine;

• variables of the C-light machine called metavariables that specify a
state of the C-light machine;

• abstract functions that specify the base operations of the C-light ma-
chine.

3.1. Type system of the C-light machine

The C-light machine has the following system of types:

- base types: CTypes, ID, Addrs, TypeSpecs, LogTypeSpecs
- functions: τ → τ ′

- Cartesian products: τ × τ ′

4 I. S. Anureev

Here CTypes is a union of all admissible types of C-light considered in Section
2. ID is a set of identifiers of the C language. Addrs is a set of addresses of
objects. TypeSpecs is a set of abstract type names [5]. LogTypeSpecs is a set
of logical types that are logical representations of abstract type names. It is
defined as follows:

• τ ∈ LogTypeSpecs, if τ is a base type;
• pointer(τ) ∈ LogTypeSpecs, if τ ∈ LogTypeSpecs;
• τ1 × . . .× τn → τ ∈ LogTypeSpecs, if τ1, . . . , τn, τ ∈ LogTypeSpecs;
• struct(s, (τ1, m1), . . . , (τn, mn)) ∈ LogTypeSpecs, if

τ1, . . . , τn ∈ LogTypeSpecs and s, m1, . . . , mn ∈ ID;
• enum(s, (m1, c1) . . . , (mn cn)) ∈ LogTypeSpecs, if

s, m1, . . . , mn ∈ ID and c1, . . . , cn ∈ CTypes;
• array(τ, n) ∈ LogTypeSpecs, if τ ∈ LogTypeSpecs, n is a positive integer.

3.2. Metavariables and states of the C-light machine

A notation φ(c) = ⊥ is used to denote that an element c does not belong to a
partial function φ. A state of the C-light machine is defined by the following
variables called metavariables:

1) MD is a variable of the type Addrs → CTypes such that MD(c) returns
the value stored at the address c;

2) Val is a variable of the type CTypes that specifies the value returned by
a function or an expression.

The state of the C-light machine is a function from metavariables to their
values. Let States be the set of all states. Greek letters σ, τ , possibly with
indexes, are used to denote states. Let MDσ(c) be a short for (σ(MD))(c).

3.3. The normal form of C-light programs

The C-light machine processes C-light programs in the normal form. A C-
light program is in the normal form if the following conditions hold:

1. The same identifier cannot denote different entities at different points
in the program.

2. There are no declarations of structures and enumerations without tags.
3. Variable declarations are in the normal form.
4. Additional information is provided for C-light consructs. This infor-

mation called a local environment of a construct precedes the construct
and has the form / ∗ ∗ p1(ē1) . . . pn(ēn) ∗ ∗/, where pi are predicates,
and ēi are values for which pi are true.

A three-stage method of C program verification 5

Normalization of a program is performed as follows. Condition 1 is pro-
vided by renaming of occurences of identifiers in the program. Condition 2
is provided by addition of new tags.

A declaration e = e′; is in the normal form if the initializer e′ is in a fully
bracketed form and does not contain designators, and the object declared in
e has a complete type. For instance, declarations

int y[4][3] = {{1, 3, 5}, {2, 4, 6}, {3, 5, 7}};

and
int y[4][3] = {1, 3, 5, 2, 4, 6, 3, 5, 7};

contain equivalent initializers, but only the first of them is in the normal
form. A declaration d = d′; is the normal form of a declaration e = e′; if

1) d = d′; is in the normal form;

2) These declarations initialize the same object by the same value.

In accordance with [5], any declaration can be reduced to the normal form.
Information used in local environments of constructs of the source pro-

gram is collected by static analysis. Let us list predicates used in local
environments. Let e be a construct for which a local environment is defined:

• If e is an enumeration constant, then enumctype(τ) and enumcval(v)
mean that e has the type τ and the value v, respectively.

• If e is a cast expression or a new operator, then logtype(τ) means that
the abstract type name in e is associated with the logical type τ .

• If e is a call of a function, then autovar(y1, . . . , ym) means that
y1, . . . , ym is the list of all automatic variables and parameters of the
function.

• If e is a declaration of a variable, then logtype(τ), storage(st) and
name(x) mean that the variable has the logical type τ , the storage
class st and the name x, respectively.

• If e is a declaration of a function, then logtype(τ1 × . . .× τn → τ) means
that e has the type τ1 × . . .× τn → τ .

• If e is a case label, then caseval(v) means that v is the value of the label
e.

• If e is a return statement occuring in the body of a function, then
name(f), rettype(τ), autovar(x1, . . . , xm), autovarval(a1, . . . , am) mean
that the function has the name f and the return type τ , and x1, . . . , xm

is the list of all automatic variables and parameters of the function with
values designated by the logical variables a1, . . . , am.

6 I. S. Anureev

• If e is a program, then prgvar(y1, . . . , yk) and mainpar(z1, . . . , zl) mean
that y1, . . . , yk is the list of all variables and function parameters of
the program e, except the parameters z1, . . . , zl of the main function.

3.4. Abstract functions

The operational definition of the C-light machine uses special abstract func-
tions which are listed below.

To refer to separate elements of aggregate types (arrays and structures),
access to addresses of these elements is required. The function mb specifies
access to addresses of elements of arrays and fields of structures. If c is the
address of an array, the function mb(c, l) returns the address of the array
element with the index l. If c is the address of a structure, the function
mb(c, l) returns the address of the field l of the structure. Let us notice that
the address of an array coincides with the address of the first element of this
array. Thus, mb(c, 0) = c for each array with the address c.

The function naddr(MD) returns a new address in accordance with the
current value of the metavariable MD. The metavariable MD specifies the
space of new addresses as a set of all addresses c such that MD(c) =⊥. Thus,
MD(naddr(MD)) =⊥. The function std(x) returns the type associated with
the identifier x that denotes either a typedef name, or a tag of a structure,
or enumeration. The function retType(τ) returns the type τ0, if the logical
type τ has the form τ1 × . . .× τn → τ0, and τ otherwise.

C-light inherits the C operators. The functions UnOpSem and BinOpSem
are used to define computations of side-effect free operators in a symbolic way
without considering concrete implementations of C. The function
UnOpSem(¯, v, τ) returns the result of applying the unary operator ¯ to
the value v of the type τ . The function BinOpSem(¯, v1, τ1, v2, τ2) returns
the result of applying the binary operator ¯ to the values v1 and v2 of the
types τ1 and τ2, respectively.

The function cast(e, τ, τ ′) converts the value e from the type τ to the type
τ ′. The function labels(S) returns a set of goto labels occuring in the sequence
of statements S at the high level. The function defaultValue(τ, storage) re-
turns the default value of the type τ in accordance with the storage class
storage:

• defaultValue(τ, static) = the default value of the type τ ,

• defaultValue(τ, auto) = ω.

The function TypeOfNewVal(τ) returns the type of a storage unit allo-
cated by the operator new for the aggregate type τ :

• TypeOfNewVal(array(τ, k)) = τ ,

• TypeOfNewVal(τ) = τ, if τ is a structure.

A three-stage method of C program verification 7

The function findex(τ) returns the first index of the aggregate type τ :

• findex(τ) = 0, if τ is an array,

• findex(struct(s, (τ1, l1), . . . , (τk, lk))) = l1.

The function next(τ, l) returns the index of the aggregate type τ that
directly follows l:

• next(array(τ, k), l) = l + 1, if l + 1 < k,

• next(array(τ, k), l) = ω, if l + 1 ≥ k,

• next(struct(s, (τ1, l1), . . . , (τk, lk)), li) = li+1, if i < k,

• next(struct(s, (τ1, l1), . . . , (τk, lk)), li) = ω, if i ≥ k.

The function itype(τ, i) returns the type of the element with the index i
of the aggregate type τ :

• itype(array(τ, k), i) = τ ,

• itype(struct(s, (τ1, l1), . . . , (τk, lk)), i) = τi.

The function ctype(u) returns the type of the constant u. The function
optype(¯, τ1, τ2) returns the type of the value returned by the operator ¯
in the case that the operator has arguments of types τ1 and τ2. The optional
argument τ2 is needed for binary operators and a conditional operator (for
which the types of the second and third arguments are only considered).
Semantics of this function is defined in accordance with [5]. The function
vtype(x) returns the type of the identifier x. The function type(e) returns the
type of the expression e:

• type(e) = ctype(e), if e is a constant,

• type(e) = vtype(e), if e is a variable,

• type(/ ∗ ∗ enumctype(τ) ∗ ∗/ e, MD) = τ , if e is an enumeration con-
stant,

• type(¯ e) = optype(¯, type(e)),

• type(e1 ¯ e2) = optype(¯, type(e1), type(e2)),

• type(e1 ? e2 : e3) = optype(? :, type(e2), type(e3)),

• type((e)) = type(e),

• type(e(e1, . . . , en)) = τ, if type(e) = τ1 × . . . × τn → τ .

The function val(e, MD) returns the value of the expression e in accor-
dance with the value of the metavariable MD:

• val(e, MD) = MD(e), if e is a variable,

8 I. S. Anureev

• val(e, MD) = e, if e is a constant,

• val(/ ∗ ∗ enumcval(v) ∗ ∗/ e, MD) = v,
if e is an enumeration constant,

• val(e[e′], MD) = MD(mb(val(e, MD), val(e′, MD))),

• val(e.m, MD) = MD(mb(val(e, MD), m)),

• val(&e, MD) = addr(e, MD),

• val(∗e, MD) = MD(val(e, MD)),

• val(/ ∗ ∗ logtype(τ) ∗ ∗/ (τ ′) e, MD) = cast(val(e, MD), type(e), τ),

• val(¯ e, MD) = UnOpSem(¯, val(e, MD), type(e)),

• val(e ¯ e′, MD) =
BinOpSem(¯, val(e, MD), type(e), val(e′, MD), type(e′)).

The function addr(e, MD) returns the address of a storage unit in which
the value of the expression e is stored:

• addr(e, MD) = e, if e is a variable,

• addr(e, MD) =⊥, if e is a constant,

• addr(e[e′], MD) = mb(val(e, MD), val(e′, MD)),

• addr(e.m, MD) = mb(val(e, MD), m),

• addr(&e, MD) =⊥,
• addr(∗e, MD) = val(e, MD),

• addr((τ) e, MD) =⊥,
• addr(¯ e, MD) =⊥,
• addr(e ¯ e′, MD) =⊥.

Let τ1 be not an aggregate type and τ2 be an aggregate type. The function
init(τ, e, MD) initializes a storage unit of the type τ in accordance with the
initializer specifier e and the value of the metavariable MD, modifying the
metavariable MD and returning the initialized value. The initializer specifier
e can be either an initializer, or an initializer with evaluated elements that
have the form (v, τ), where v is the value of the element, and τ is the type of
the element, or a storage class (if there is no initializier in the declaration that
defines the initialized object). In the latter case initialization is performed
by default. The function init is defined as follows:

• init(τ1, storage, MD) = (MD, defaultValue(τ1, storage)),

• init(τ1, e, MD) = (MD, cast(val(e, MD), type(e), τ1)),

• init(τ1, (v, τ), MD) = (MD, cast(v, τ, τ1)),

A three-stage method of C program verification 9

• init(τ2, e, MD) = (updv(MD, nc, τ2, e), nc), where nc = naddr(MD).

The function updv(MD, nc, τ, e), modifying the metavariable MD, spec-
ifies allocation and initialization of storage units starting with the address
nc for an object of the aggregate type τ with the initializer specifier e:

• updv(MD, nc, τ, e) = updv(MD, nc, τ, e, findex(τ)),

• updv(MD, nc, τ, storage, l) =
updv(upd(MD′, mb(nc, l), Val′), nc, τ, storage, next(l)),
if l 6= ω and (MD′, Val′) = init(itype(τ, l), storage, MD),

• updv(MD, nc, τ, {e1, e2, . . . , ek}, l) =
updv(upd(MD′, mb(nc, l), Val′), nc, τ, {e2, . . . , ek}, next(l)),
if l 6= ω and (MD′, Val′) = init(itype(τ, l), e1, MD),

• updv(MD, nc, τ, {}, l) =
updv(upd(MD′, mb(nc, l), Val′), nc, τ, {}, next(l)),
if l 6= ω and (MD′, Val′) = init(itype(τ, l), static, MD),

• updv(MD, nc, τ, e, ω) = MD.

Let τ1 be not an aggregate type and τ2 be an aggregate type. The function
new(τ, MD) allocates a storage unit for an object of the type τ , modifying
the metavariable MD and returning the address of the storage unit:

• new(τ1, MD) = (upd(MD, nc, ω), nc), where nc = naddr(MD),

• new(τ2, MD) = init(τ2, auto, MD).

The function delete(MD, nc, τ) releases memory, starting with the stor-
age unit at the address nc that stores an object of the type τ :

• delete(MD, nc, τ) = delete(upd(MDnc, ⊥), nc, τ, findex(τ ′)),
if τ is an aggregate type,

• delete(MD, nc, τ) = upd(MD, nc, ⊥), if τ is not an aggregate type,

• delete(MD, nc, τ, l) = delete(delete(MD,), nc, τ, next(τ, l)), if l 6= ω,

• delete(MD, nc, τ, ω) = MD.

The optional fourth argument of the function delete designates an index of
an array or a field of a structure.

3.5. Configurations of C-light machine

Operational semantics of a programming language is defined as a set of pairs
of configurations of its abstract machine specified by the transition relation.
Definition of a configuration can vary depending on the programming lan-
guage. In our case the standard notion of a configuration is used, since all

10 I. S. Anureev

features of the programming language and computations are «incapsulated»
in states.

Definition. A configuration of C-light machine is a pair 〈P, σ〉, where P
is a program and σ is a state.

An axiom of operational semantics has the form 〈A, σ〉 → 〈B, σ′〉. This
means that one step of execution of the program fragment A starting in the
state σ leads to the state σ′ and B is the program fragment that remains to
execute. A rule of operational semantics has the form

P1 ... Pn

〈A, σ〉 → 〈B, σ′〉 .

This means that if the conditions P1, . . . , Pn are fulfilled, there is a transition
from the configuration 〈A, σ〉 to the configuration 〈B, σ′〉.

Thus, execution of programs in operational semantics is specified by (pos-
sibly infinite) sequences of configurations:

〈S1, σ1〉 → 〈S2, σ2〉 → . . . → 〈Si, σi〉 →

The configuration 〈S1, σ1〉 is called initial. If the sequence is finite and
〈Sn, σn〉 is the last configuration in this sequence, it is said that execution
of the fragment S1 starting in the state σ1 leads to the final configuration
〈Sn, σn〉. Let→∗ denote a transitive reflexive closure of the relation→. Then
the above execution can be denoted by 〈S1, σ1〉 →∗ 〈Sn, σn〉.

Let ε denote an empty program fragment. An empty fragment can be
either an empty program or an empty expression.

4. Operational semantics

Operational semantics models execution of programs in an abstract machine.
The rules of operational semantics of C-light are classified according to three
main groups of C-light constructs — expressions, declarations and state-
ments. Beyond that point there is a special group which includes constructs
that does not belong to the mentioned groups (for example, a sequence of
statements).

4.1. Semantics of expressions

A function call. Semantics of a function call is defined by three rules.
The first rule specifies evaluation of function arguments. The second rule
specifies execuiton of a function returning a value. The third rule specifies
execution of a function that returns no value. The intermediate state after
evaluation of function arguments is given by an auxiliary construct FCall.

The first rule has the form:

A three-stage method of C program verification 11

〈e0, σ〉 →∗ 〈v0, σ0〉 type(e0) = τ1 × . . .× τn → τ
〈en, σ0〉 →∗ 〈vn, σ1〉 . . . 〈e1, σn−1〉 →∗ 〈v1, σn〉

〈/ ∗ ∗ autovar(y1, . . . , ym) ∗ ∗/ e0(e1, . . . , en), σ〉 →
〈/ ∗ ∗ autovar(y1, . . . , ym) ∗ ∗/ FCall(fst(v0))(

cast(fst(v1), type(e1), τ1), . . . , cast(fst(vn), type(en), τn)), σn〉
Semantics of the auxiliary construct FCall is defined by two rules depend-

ing on whether the function returns a value or not.
Let FCallPremise denote a premise

MDσ(f) = (τ, τ1 × . . .× τn, [x1, . . . , xn], S)∧
MDσ(y1) = a1 ∧ . . . ∧MDσ(ym) = am∧
MD′ = upd(MDσ, (x1, . . . , xn), (v1, . . . , vn))

The rule for a function returning a value has the form:

FCallPremise 〈S returnStop, σ(MD ← MD′)〉 →∗ 〈v, σ′〉
〈/ ∗ ∗ autovar(y1, . . . , ym) ∗ ∗/ FCall(f)(v1, . . . , vn), σ〉 →
〈v, σ′(MD ← upd(MD, (y1, . . . , ym), (a1, . . . , am)))〉

An auxiliary construct returnStop catches exceptions Exc(returnStart(e))
and Exc(returnStart), thrown by a statement return with an argument and
without it, respectively:

〈returnStop, σ〉 → 〈ε, σ〉
〈Exc(returnStart) returnStop, σ〉 → 〈ε, σ〉

〈Exc(returnStart(v)) returnStop, σ〉 → 〈(v, ⊥), σ〉
The rule for a function that returns no value has the form:

FCallPremise 〈S returnStop, σ(MD ← MD′)〉 →∗ 〈ε, σ′〉
〈/ ∗ ∗ autovar(y1, . . . , ym) ∗ ∗/ FCall(f)(v1, . . . , vn), σ〉 →
〈ε, σ′(MD ← upd(MD, (y1, . . . , ym), (a1, . . . , am)))〉

Old values of the automatic variables y1, . . . , ym of a function with the ad-
dress f, including the parameters of the function, are restored after exiting
the function.

Memory allocation operators. The new operator allocates one storage
unit for scalar types and a set of storage units for aggregate types:

(MD′, V) = new(τ, MDσ)
〈/ ∗ ∗ logtype(τ) ∗ ∗/ new e, σ〉 → 〈V, σ(MD ← MD′)〉

A rule for the delete operator has the form:

12 I. S. Anureev

〈e, σ〉 →∗ 〈v, σ′〉 MD′ = delete(MDσ′ , fst(v), τ)
〈/ ∗ logtype(τ) ∗ / delete (e, τ ′), σ〉 → 〈ε, σ′(MD ← MD′)〉

The delete operator releases the memory allocated for a data structure of
the type τ , starting with the address val(v).

Assignment operators. Rules for a simple assignment have the form:

〈e2, σ〉 →∗ 〈v2, σ′〉 〈e1, σ′〉 →∗ 〈v1, σ′′〉
v = cast(fst(v2), type(e2), type(e1)) type(e1) is not a structure type

〈e1 = e2, σ〉 → 〈v, σ′′(MD ← upd(MD, snd(v1), v))〉

〈e2, σ〉 →∗ 〈v2, σ′〉 〈e1, σ′〉 →∗ 〈v1, σ′′〉
type(e1) is a structure type with fields l1, . . . , lm

〈e1 = e2, σ〉 →
〈v, σ′′(MD ← upd(MD, (mb(v1, l1), . . . , mb(v1, lm)),

(MB(mb(v2, l1)), . . . , MB(mb(v2, lm)))))〉

A rule for a compound assignment has the form:

〈e2, σ〉 →∗ 〈v′, σ′〉 〈e1, σ′〉 →∗ 〈v′′, σ′′〉
v = cast(BinOpSem(¯, fst(v′′), type(e1), fst(v′), type(e2)),

type(¯, type(e1), type(e2)), τ ′′)
〈e1¯ = e2, σ〉 → 〈v, σ′′(MD ← upd(MD, snd(v′′), v))〉

Variables and constants. Semantics of evaluation of variables and con-
stants is defined by the axiom:

〈x, σ〉 → 〈(val(x, MDσ), addr(x, MDσ)), σ〉

Access to elements of aggregate types. Let τ ′ be an integer type. The
rule for access to array elements has the form:

〈e, σ〉 →∗ 〈v, σ′〉 〈a, σ′〉 →∗ 〈c, σ′′〉 b = mb(fst(c), fst(v))
〈a[e], σ〉 → 〈(MDσ′′(b), b), σ′′〉

The rule for access to structure elements has the form:

〈e, σ〉 →∗ 〈v, σ′〉 b = mb(fst(v), m)
〈e.m, σ〉 → 〈(MDσ′(b), b), σ′〉

Indirection operators. The rule for an indirection operator has the form:

〈e, σ〉 →∗ 〈v, σ′〉 b = fst(v)
〈∗e, σ〉 → 〈(MDσ′(b), b), σ′〉

A three-stage method of C program verification 13

Address operators. The rule for an address operator has the form:

〈e, σ〉 →∗ 〈v, σ′〉
〈&e, σ〉 → 〈snd(v), σ′〉

Cast operators. The rule for a cast operator has the form:

〈e, σ〉 →∗ 〈v, σ′〉
/ ∗ ∗ logtype(τ) ∗ ∗/ 〈(τ ′)e, σ〉 → 〈cast(fst(v), type(e), τ), σ′〉

The comma operator. Let e not contain comma operators at the high
level. The rule for a comma operator has the form:

〈e, σ〉 →∗ 〈v, σ′〉
〈e, e′, σ〉 → 〈e′, σ′〉

Logical operators && and ||. Let τ be a scalar type. There is a sequence
point after evaluation of the first operand of logical operators. Depending on
the result of evaluation of the first operand, the second operand of a logical
operator can be evaluated or not. An auxiliary construct OrAnd specifies
evaluation of the second operand. Rules for the && operator have the form:

〈e1, σ〉 →∗ 〈v, σ′〉 cast(fst(v), type(e1), int) = 0

〈e1 && e2, σ〉 → 〈0, σ′〉

〈e1, σ〉 →∗ 〈v, σ′〉 cast(fst(v), type(e1), int) 6= 0

〈e1 && e2, σ〉 → 〈OrAnd(e2), σ′〉
Rules for the || operator have the form:

〈e1, σ〉 →∗ 〈v, σ′〉 cast(fst(v), type(e1), int) 6= 0

〈e1 || e2, σ〉 → 〈1, σ′〉

〈e1, σ〉 →∗ 〈v, σ′〉 cast(fst(v), type(e1), int) = 0

〈e1 || e2, σ〉 → 〈OrAnd(e2), σ′〉
Semantics of the construct OrAnd is defined by the following rules:

〈e, σ〉 →∗ 〈v, σ′〉 cast(fst(v), type(e), int) = 0

〈OrAnd(e), σ〉 → 〈0, σ′〉

〈e, σ〉 →∗ 〈v, σ′〉 cast(fst(v), type(e), int) 6= 0

〈OrAnd(e), σ〉 → 〈1, σ′〉
Increment and decrement operators. Prefix increment and decrement
operators are defined by the following axioms:

14 I. S. Anureev

〈+ + e, σ〉 → 〈e+ = 1, σ〉 〈− − e, σ〉 → 〈e− = 1, σ〉

Let τ be a type different from an array type. Rules for postfix increment
and decrement operators have the form:

〈e, σ〉 →∗ 〈v, σ′〉
〈e + +, σ〉 →
〈v, σ′(MD ← upd(MDσ′ , snd(v), BinOpSem(+, fst(v), type(e), 1, int)))〉

〈e, σ〉 →∗ 〈v, τ∗), σ′〉
〈e−−, σ〉 →
〈v, σ′(MD ← upd(MDσ′ , snd(v), BinOpSem(−, fst(v), τ, 1, int)))〉

The conditional operator. Let τ0 be a scalar type. Rules for a conditional
operator have the form:

〈e0, σ〉 →∗ 〈v, σ′〉 cast(fst(v), type(e0), int) 6= 0
〈e1, σ′〉 →∗ 〈v1, σ′′〉 τ = type(? :, type(e1), type(e2))

〈e0 ? e1 : e2, σ〉 → 〈cast(v1, type(e1), τ), σ′′〉

〈e0, σ〉 →∗ 〈v, σ′〉 cast(fst(v), type(e0), int) = 0
〈e2, σ′〉 →∗ 〈v2, σ′′〉 τ = type(? :, type(e1), type(e2))

〈e0 ? e1 : e2, σ〉 → 〈cast(v2, type(e2), τ), σ′′〉

The other unary operators. Unary operators that do not have separate
rules are defined by the general rule:

〈e, σ〉 →∗ 〈v, σ′〉
〈¯ e, σ〉 → 〈UnOpSem(¯, fst(v), type(e)), σ′〉

The other binary operators. Binary operators that do not have separate
rules are defined by the general rule:

〈e2, σ0〉 →∗ 〈v2, σ1〉 〈e1, σ1〉 →∗ 〈v1, σ2〉
〈e1 ¯ e2, σ〉 → 〈BinOpSem(¯, fst(v1), type(e1), fst(v2), type(e2)), σ2〉

4.2. Semantics of declarations

Variable declarations. Semantics of variable declarations is defined by
three rules: one rule for a declaration of a variable without an initializer and
two rules for a declaration of a variable with an initializer.

Let e; be a variable declaration including the only declarator without an
initializer. A rule for a declaration of a variable without an initialzer has the
form:

A three-stage method of C program verification 15

(MD′, V) = init(τ, st, upd(MDσ, x, ω))
V′ = x, if τ is a structure type, and V′ = V, if not
〈/ ∗ ∗ logtype(τ) storage(st) name(x) ∗ ∗/ e; , σ〉 →
〈ε, σ(MD ← upd(MD′, x, V′))〉

Let e = e′; be a variable declaration including the only declarator with
an initializer e′. Rules for a declaration of a variable without an initialzer
have the form:

〈computeInit(e′), σ〉 → 〈v, σ′〉 v 6= ω (MD′, V) = init(τ, v, upd(MDσ′ , x, ω))
V′ = x, if τ is a structure type, and V′ = V, if not

〈/ ∗ ∗ logtype(τ) storage(st) name(x), ∗ ∗ / e = e′; , σ〉 →
〈ε, σ′(MD ← upd(MD′, x, V′))〉

〈computeInit(e′), σ〉 → 〈ω, σ′〉
〈e = e′; , σ〉 → 〈ω, σ′〉

The auxiliary construct computeInit(e) evaluates values of all expressions
occuring in the initializer e from left to right:

〈computeInit(e1), σ0〉 → 〈v1, σ1〉 v1 6= ω
. . .
〈computeInit(ek), σk−1〉 → 〈vk, σk〉 vk 6= ω

〈computeInit({e1, . . . , ek}), σ0〉 → 〈{v1, . . . , vk}, σk〉

〈computeInit(e1), σ0〉 → 〈v1, σ1〉 v1 6= ω
. . .
〈computeInit(em), σm−1〉 → 〈vm, σm〉 vm 6= ω m < k
〈computeInit(em+1), σm〉 → 〈vm+1, σm+1〉 vm+1 = ω

〈computeInit({e1, . . . , ek}), σ0〉 → 〈ω, σk〉
Let the initializer e be not enclosed in curly brackets. Then the following

rule holds:
〈e, σ〉 →∗ 〈v, σ′〉

〈computeInit(e), σ〉 → 〈(fst(v), type(e)), σ′〉

Type declarations. Axioms for type declarations have the form:

〈typedef e; , σ〉 → 〈ε, σ〉 〈enum e {e′}; , σ〉 → 〈ε, σ〉

Function declarations. An axiom for a function declaration has the form:

〈/ ∗ ∗ logtype(τ1 × . . .× τn → τ) ∗ ∗/ τ ′ f(τ ′1 x1, . . . , τ ′n xn){S}, σ〉 →
〈ε, σ(MD ← upd(MDσ, f, (τ, τ1 × . . .× τn, [x1, . . . , xn], {S}))〉

16 I. S. Anureev

4.3. Semantics of expressions

Labeled statements. A statement marked by a label L is executed when ei-
ther it gets control in the usual way or it catches the exception
Exc(gotoStart(L)) thrown by a statement goto L:

〈L : T, σ〉 → 〈T, σ〉

〈Exc(gotoStart(L)) L : T, σ〉 → 〈T, σ〉
A statement marked by a label case is executed when either it gets control

in the usual way or it catches the exception Exc(switchStart(c)) thrown by a
statement switch:

〈case e : T, σ〉 → 〈T, σ〉
v = c

〈Exc(switchStart(c)) / ∗ ∗ caseval(v) ∗ ∗/ case e : T, σ〉 → 〈T, σ〉
A statement marked by a label default is executed when either it gets

control in the usual way or it catches the exception Exc(defaultStart) thrown
by a statement switchStop:

〈default : T, σ〉 → 〈T, σ〉

〈Exc(defaultStart) default : T, σ〉 → 〈T, σ〉
The auxiliary construct switchStop(T) catches the exception

Exc(switchStart(c)), thrown by a statement switch with a body T in the
case that none of case labels from the body T does not coincide with the
value of a controlling expression of the switch statement, and starts to begin
the body T again, throwing the exception Exc(defaultStart). Otherwise, this
construct is ignored:

〈Exc(switchStart(c)) switchStop(T) T′, σ〉 →
〈Exc(defaultStart) T defaultStop T′, σ〉

〈switchStop(T), σ〉 → 〈ε, σ〉
The auxiliary construct defaultStop catches the exception

Exc(defaultStart) thrown by the statement switchStop(T) in the event that
T does not contain a label default. Otherwise, this construct is ignored:

〈Exc(defaultStart) defaultStop T, σ〉 → 〈T, σ〉

〈defaultStop, σ〉 → 〈ε, σ〉

The block statement. An axiom for a block has the form:

A three-stage method of C program verification 17

〈{T}, σ〉 → 〈T gotoStop(T), σ〉
The auxiliary construct gotoStop(T) catches the exception

Exc(gotoStart(L)) thrown by a statement goto L in the event that the la-
bel L occurs in the sequence T of statements and declarations. Otherwise,
this construct is ignored:

L ∈ labels(T)
〈Exc(gotoStart(L)) gotoStop(T) T′, σ〉 →
〈Exc(gotoStart(L)) T gotoStop(T) T′, σ〉

L 6∈ labels(T)
〈Exc(gotoStart(L)) gotoStop(T) T′, σ〉 →
〈Exc(gotoStart(L)) T′, σ〉

〈gotoStop(T), σ〉 → 〈ε, σ〉

The expression statement. Execution of an expression statement is re-
duced to evaluation of the expression associated with it:

〈e; , σ〉 → 〈e, σ〉
The null statement. A null statement executes no action:

〈 ; , σ 〉 → 〈 ε, σ 〉
Selection statements. Execution of an if statement is defined by the
following rules:

〈e, σ〉 →∗ 〈ω, σ′〉
〈if(e) S1 else S2, σ〉 → 〈ω, σ′〉

〈e, σ〉 →∗ 〈v, σ′〉 cast(fst(v), type(e), int) 6= 0

〈if(e) S1 else S2, σ〉 → 〈S1, σ′〉
〈e, σ〉 →∗ 〈v, σ′〉 cast(fst(v), type(e), int) = 0

〈if(e) S1 else S2, σ〉 → 〈S2, σ′〉
〈e, σ〉 →∗ 〈ω, σ′〉

〈if(e) S, σ〉 → 〈ω, σ′〉
〈e, σ〉 →∗ 〈v, σ′〉 cast(fst(v), type(e), int) 6= 0

〈if(e) S, σ〉 → 〈S, σ′〉
〈e, σ〉 →∗ 〈v, σ′〉 cast(fst(v), type(e), int) = 0

〈if(e)S, σ〉 → 〈ε, σ′〉
The switch statement switch(e) S evaluates the value c of the control-

ling expression e and throws the exception Exc(switchStart(c)) that can be
catched by statements from S marked by labels case and default:

18 I. S. Anureev

〈e, σ〉 →∗ 〈ω, σ′〉
〈switch(e) {S}, σ〉 → 〈ω, σ′〉

〈e, σ〉 →∗ 〈v, σ′〉
〈switch(e) {S}, σ〉 →
〈Exc(switchStart(fst(v))) S switchStop(S) gotoStop(S) breakStop,
σ′〉
The auxiliary construct breakStop catches the exception

Exc(breakStart(c)) thrown by a statement break:

〈Exc(breakStart) breakStop T, σ〉 → 〈T, σ〉
〈breakStop, σ〉 → 〈ε, σ〉

Iteration statements. The auxiliary construct continueStop(e, S) is used
in rules for iteration statements. It catches an exception Exc(continueStart)
thrown by a statement continue and in addition checks the controlling ex-
pression e of an iteration statement with a body T before exiting the iteration
statement:

〈e, σ〉 →∗ 〈ω, σ′〉
〈continueStop(e, T) T′, σ〉 → 〈ω, σ′〉

〈e, σ〉 →∗ 〈ω, σ′〉
〈Exc(continueStart) continueStop(e, T) T′, σ〉 → 〈ω, σ′〉

〈e, σ〉 →∗ 〈v, σ′〉 cast(fst(v), type(e), int) = 0

〈continueStop(e, T) T′, σ〉 → 〈T′, σ′〉
〈e, σ〉 →∗ 〈v, σ′〉 cast(fst(v), type(e), int) = 0

〈Exc(continueStart) continueStop(e, T) T′, σ〉 → 〈T′, σ′〉
〈e, σ〉 →∗ 〈v, σ′〉 cast(fst(v), type(e), int) 6= 0

〈continueStop(e, T) T′, σ〉 →
〈T gotoStop(T) continueStop(e, T) T′, σ′〉
〈e, σ〉 →∗ 〈v, σ′〉 cast(fst(v), type(e), int) 6= 0

〈Exc(continueStart) continueStop(e, T) T′, σ〉 →
〈T gotoStop(T) continueStop(e, T) T′, σ′〉

Execution of iteration statements is reduced to execution of the construct
continueStop:

〈while(e) S, σ〉 → 〈continueStop(e, S) breakStop, σ〉

〈do S while(e); , σ〉 →
〈S gotoStop(S) continueStop(e, S) breakStop, σ〉

A three-stage method of C program verification 19

〈for(e1; e2; e3) S, σ〉 →
〈e1; if(!e2) break; S gotoStop(S)

continueStop((e3, e2), S) breakStop, σ〉
Jump statements. Jump statements throw exceptions of the form
Exc(. . .). These exceptions are catched by C-light constructs of the C-light
language and auxiliary constructs by analogy with mechanism of exception
handling:

〈goto L; , σ〉 → 〈Exc(gotoStart(L)), σ〉
〈break; , σ〉 → 〈Exc(breakStart), σ〉

〈continue; , σ〉 → 〈Exc(continueStart), σ〉
〈return; , σ〉 → 〈Exc(returnStart), σ〉

〈e, σ〉 →∗ 〈v, σ′〉
〈/ ∗ ∗ rettype(τ) ∗ ∗/ return e; , σ〉 →
〈Exc(returnStart(cast(fst(v), type(e), τ)), σ′〉

〈e, σ〉 →∗ 〈ω, σ′〉
〈return e; , σ〉 → 〈ω, σ′〉

4.4. Other rules

The sequence rule. Let S be a statement or an auxiliary construct, T be
a nonempty sequence of statements, declarations and auxiliary constructs.
A sequence rule has the form:

〈S, σ〉 → 〈S′, σ′〉
〈S T, σ〉 → 〈S′ T, σ′〉

Axioms of exception propagation. These axioms are applied when none
of the above axioms and rules are applicable. Let E be a declaration, state-
ment or auxiliary construct. The axioms have the form:

〈Exc(e) E T, σ〉 → 〈Exc(e) T, σ′〉

〈ω E T, σ〉 → 〈ω T, σ′〉

Program. Rules for a program Prgm(T) consisting of the sequence T of
declarations have the form:

〈T, σ(MD ← upd(MD, (y1, . . . , yk), ⊥)〉 →∗ 〈ε, σ′〉
MDσ′(main) = (τ, τ1 × . . .× τn, [z1, . . . , zn], S)
〈S returnStop, σ′〉 →∗ 〈ω, σ′′〉
〈/ ∗ prgvar(y1, . . . , yk) ∗ / Prgm(T), σ〉 → 〈ω, σ′′〉 ,

20 I. S. Anureev

〈T, σ(MD ← upd(MD, (y1, . . . , yk), ⊥)〉 →∗ 〈ε, σ′〉
MDσ′(main) = (τ, τ1 × . . .× τn, [z1, . . . , zn], S)
〈S returnStop, σ′〉 →∗ 〈v, σ′′〉
〈/ ∗ prgvar(y1, . . . , yk) ∗ / Prgm(T), σ〉 →
〈v, σ′′(MD ← upd(MD, (y1, . . . , yk, z1, . . . , zn), ⊥))〉

The parameters z1, . . . , zn of the main function specify the program param-
eters.

5. Overview of the C-kernel language

The C-kernel language is an intermediate language in the two-level program
verification schema in which C-light programs are translated. It is a subset
of the C-light language.

The set of keywords of the C-kernel language is reduced in comparison
with the C-light language and includes the following keywords: auto, _Bool,
char, delete, double, else, enum, float, goto, if, int, long, new, return, short,
signed, sizeof, static, struct, typedef, unsigned, void, while.

Expressions. The number of side effects in C-kernel is minimized and op-
erators containing sequence points (for example, logical operators && and
||) are forbidden. A normalized expression is an expression that does not
contain conditional operations, a comma operator, logical operators && and
||, simple and compound assignments, increment and decrement operators.
Let e (may be with indices) denote a normalized expression, τ be a type. An
expression statement of C-kernel has a form:

• e = e′(e1, . . . , en);

• e = new(τ);

• e = e′;

• e′(e1, . . . , en);

• delete(e);

Declarations. The following restrictions are put on the set of C-kernel
declarations:

1. Lists of declared objects are enabled only in function declarations, any
other declaration specifies exactly one object.

2. Storage class specifiers static and auto are obligatory. Other storage
class specifiers are forbidden.

A three-stage method of C program verification 21

Statements. The following operators are valid in the C-kernel language:

1. an expression statement,

2. a null statement,

3. an if statement with the obligatory else branch and a normalized con-
dition,

4. a while statement with a normalized condition,

5. a goto statement,

6. a return statement in which a returning expression is a normalized
expression,

7. a block statement.

6. Annotation language

The annotation language is used for description of the properties of states
of the C-light machine and for writing annotations in axiomatic semantics
of C-kernel.

6.1. Alphabet

The alphabet of the annotation language consists of the following classes of
symbols:

• variables,
• constants (in particular, symbols of operators of the С-kernel lan-

guage),
• quantifiers ∃ and ∀ and logical connectives ¬, ⇒, ⇔, ∧, ∨,
• brackets (,), [,], <, >, {, },
• punctuation symbols: period, colon, comma.

6.2. Expressions

Variables and constants can be of any type except void. The set of all
variables is denoted by Var. The set of values of a variable of a base type
includes the undefined value. The undefined value is denoted by ω.

Expressions of the annotation language are defined by induction:

• a variable v of a type τ is an expression of the type τ ;
• a constant c of a type τ is an expression of the type τ ;
• if s1, . . . , sn are expressions of types τ1, . . . , τn, repsectively, and s is

an expression of the type τ1 × ...× τn → τ , then s(s1, . . . , sn) is an
expression of the type τ .

22 I. S. Anureev

Logical expressions are constructed from expressions of the type _Bool with
the help of logical connectives and quantifiers. Further the expressions of
the type _Bool are called assertions.

Expressions of the annotation language have a prefix form. Particularly
this means that the standard C-light operators are written in this form. For
example, the expressions like a[3], r.f and x + 3 will have the form [](a, 3),
elem(r, f) and +(x, 3), repsectively. Further in examples we write such ex-
pressions in a usual infix form for convenience.

6.3. Substitutions

The concept of substitution in expressions is used in the definition of ax-
iomatic semantics of C-kernel. Substitution is a function which maps ex-
pressions to expressions. The substitution of a term for a variable is the
replacement of all free occurences of the variable.

A substitution of an expression t for a variable u in an expression s is
usually written as s(u ← t) and is defined by induction of the expression
structure:

• if s is a variable, then

s(u ← t) ≡
{

t, if s ≡ u,

s, otherwise;

• if s is a constant of a base type, then s(u ← t) ≡ s;

• if s ≡ f(s1, . . . , sn) for some expression f of the functional type,
then s(u ← t) ≡ f(u ← t)(s1(u ← t), ..., sn(u ← t)).

6.4. Interpretation of types

The set of values associated with each type τ is called the carrier of the
type τ and denoted by Dτ . Since we do not describe semantics for a specific
architecture, carrier borders of the base types are specified by symbolic con-
stants. Note that one of the ways of interpretation of these constants can be
initialisation by values from the standard file limits.h.

• D_Bool = {FALSE, TRUE};
• Dunsigned char = {0 . . .UCHAR_MAX};

...

• Dwchar_t = Dunsigned short;

• Denum = Dsigned int for any enumeration;

• Dvoid = ∅;
• Dτ∗ = DLocations for each type τ ;

A three-stage method of C program verification 23

• Dτ [n] = Dn
τ (Cartesian power of n) for each nonempty and nonfunctional

type τ ;
• Dstruct{τ1 v1; ...; τn vn;} = Dτ1 × . . . × Dτn ;
• Dτ1× ...×τn→τ = Dτ1 × . . . × Dτn → Dτ , i. e. the set of all functions

from the Cartesian product of sets Dτ1 , . . . , Dτn to the set Dτ ;
• DID = the set of identifiers of the C language;
• DAddrs = the set of non-interpreted constants;
• DTypeSpecs = the set of abstract type names of the C language.

The semantic domain D is defined as a union on all types: D =
⋃
τ

Dτ .

6.5. Interpretation of expressions

We assume that each constant of a base type denotes itself.
The values of variables are defined by the states of the C-light machine.

A state is a map which assigns a value of the domain Dτ for each variable of
the type τ .

Semantics (interpretation) I‖s‖ of the expression s of the type τ is the
map

I‖s‖ : States → DT,

which is defined by induction on the structure of s:

• if s is a variable, then I‖s‖(σ) = σ(s);

• if s is a constant designating a value d, then I‖s‖(σ) = d;

• if s ≡ op(s1, . . . , sn) for some expression op, then

I‖s‖(σ) = I‖op‖(σ)(I‖s1‖(σ), . . . , I‖sn‖(σ)).

Since I holds everywhere, further we will write σ(s) instead of I‖s‖(σ).

6.6. Interpretation of assertions

We define an update of a state σ denoted by σ(u ← d), where u is a variable
of a type τ , and d is an element of the type τ . It is a state which coincides
with σ everywhere except for, may be, the variable u, and σ(u) = d. Updates
are used to model assignments of values to variables.

Finally we define the concept of truth of an assertion p in a state σ
denoted by σ |= p. Truth is defined by induction on the structure of the
assertion p.

• σ |= B if and only if σ(B) = true, if B is an elementary logical formula
(i. e. an elementary expression of the type _Bool);

24 I. S. Anureev

• σ |= ¬p if and only if it is wrong that σ |= p (denoted by σ 6|= p);
• σ |= p ∨ q if and only if σ |= p or σ |= q;
• σ |= ∃ x. p if and only if σ(x ← d) |= p for some element d.

For the rest of logical connectives and the quantifier ∀, truth is defined by
common logical relations (p ∧ q ≡ ¬(¬p ∨ ¬q) and others).

If σ |= p, then we say that p is satisfied in σ. Also we use the concept of
the truth domain of an assertion defined as

‖p‖ = {σ| σ is a state and σ |= p}.
We say that an assertion p is true or is satisfied if ‖p‖ = States.

7. Axiomatic semantics of C-kernel

7.1. Main notions

Axiomatic semantics of a programming language is defined by a system of
axioms and inference rules over formulas of the form {P}S {Q} called Hoare
triples, where P and Q are formulas of the annotation language and S is a
program or a program fragment. The Hoare triple {P}S {Q} is true, if the
following holds: if the precondition P is true before execution of S and exe-
cution of S is terminated, then the postcondition Q is true after termination.

We assume that each function in a program is provided by pre- and
postconditions, and each label marking a labelled statement is provided by
a formula of the annotation language called an invariant of the label. An
invariant of a label specifies a condition that becomes true when execution
of a program reaches the label. Information about pre- and postconditions
of functions and invariants of labeled statements is specified by functions
Pre, Post and Inv, respectively. The functions Pre(c) and Post(c) return
formulas called a precondition and a postcondition of a function with an entry
point that is allocated at the address c. The precondition Pre(c) depends
on the metavariable MD, logical variables argv1, ..., argvn that specify the
values of arguments of the function. The postcondition Post(c) depends
on the metavariables MD and Val, and logical variables argv1, ..., argvn.
The metavariable Val specifies the value returned by the function. Pre- and
postconditions can additionally depend on the logical variable fpar that is a
parameter of the Hoare triple for calls of the function. The function Inv(L)
returns an invariant of the label L.

7.2. The expression statement

Function call. Semantics of a function call is defined by two sorts of rules:
rules for a function returning a value and a rule for a function that returns
no value.

A three-stage method of C program verification 25

Let P′ and Q′ denote formulas

Pre(val(e0, MD))(argv1 ← val(e1, MD), . . . , argvn ← val(en, MD))

and

Post(val(e0, MD1))(argv1 ← val(e1, MD1), . . . , argvn ← val(en, MD1))

, respectively.
Axioms for a call of a function designated by the expression e0 in the

case that it returns a value have the form:

{∃ fpar (P′(MD)∧
∀MD′.∀Val′. Q′(MD′, Val′) ⇒

Q(MD ← upd(MD′, val(e, MD′), Val′))(Val ← Val′)(MD1 ← MD))}
e = e0(e1, . . . , en);

{Q}

if type(e) is not a structure type.

{∃ fpar (P′(MD)∧
∀MD′. ∀Val′. Q′(MD′, Val′) ⇒

Q(MD ← upd(MD′, (mb(v, l1), . . . , mb(v, lm)),
(MD′(mb(Val′, l1)), . . . , MD′(mb(Val′, lm)))))(Val ← Val′)(MD1 ← MD))}

e = e0(e1, . . . , en);
{Q}

where v = val(e, MD′), if type(e) is a structure type with fields l1, . . . , lm.
The metavariable Val occuring in the postcondition Q′ of the function stores
the value returned by the function.

The axiom for a call of a function designated by the expression e0 in the
case that it returns no value has the form:

{∃ fpar. (P′(MD) ∧ ∀MD′.Q′(MD′, Val′) ⇒ Q(MD ← MD′)(MD1 ← MD))}
e0(e1, . . . , en);
{Q}

The new operator. Axioms for a new operator have the form:

{Q(MD ← upd(fst(U), addr(e, fst(U)), snd(U)))}
e = / ∗ ∗ logtype(τ) ∗ ∗/ new e′; {Q},

where U = new(τ, MD), if τ is not a structure type.

{Q(MD ← upd(MD′, (mb(val(e, MD′), l1), . . . , mb(val(e, MD′), lm)),
(MD′(mb(snd(U), l1)), . . . , MD′(mb(snd(U), lm)))))}

e = / ∗ ∗ logtype(τ) ∗ ∗/ new e′; {Q},
where U = new(τ, MD) and MD′ = fst(U), if τ is a structure type with fields
l1, . . . , lm.

26 I. S. Anureev

The delete operator. An axiom for a delete operator has the form:

{Q(MD ← delete(MD, val(e, MeM), τ))} / ∗ logtype(τ) ∗ /
delete(e, τ ′); {Q}

Assignment statements. Let an expression e′ not include a function call,
operator new and cast operators. Axioms for an assignment statement have
the form:

{Q(MD ← upd(MD, addr(e, MD), cast(val(e′, MD), type(e′), type(e))))}
e = e′; {Q},

if type(e) is not a structure type.

{Q(MD ← upd(MD, (mb(val(e, MD), l1), . . . , mb(val(e, MD), lm)),
(MD(mb(val(e′, MD), l1)), . . . , MD(mb(val(e′, MD), lm)))))}

e = e′; {Q},

if type(e) is a structure type with fields l1, . . . , lm.

7.3. Declarations

Variable declarations. Semantics of variable declarations is defined by
two axioms. The first axiom specifies declarations without an initializer.
The second axiom specifies declarations with an initializer.

The axiom for a variable declaration without an initializer has the form:

{Q(MD ← upd(fst(U), x, V))}
/ ∗ ∗ logtype(τ) storage(st) name(x) ∗ ∗/ e; {Q},

where U = init(τ, st, upd(MD, x, ω)), V = x, if τ is a structure type, and
V = snd(U), otherwise.

The axiom for a variable declaration with an initializer has the form:

{Q(MD ← upd(fst(U), x, V))} / ∗ ∗ logtype(τ) name(x) ∗ ∗/ e = e′; {Q},

where U = init(τ, e′, upd(MD, x, ω)), V = x, if τ is a structure type, and
V = snd(U), otherwise.

Type declaration. Axioms for a type declaration have the form:

{Q} typedef e; {Q} {Q} enum e {e′}; {Q}

Function declarations. The axiom for a function declaration has the form:

{Q(MD ← upd(MD, f, (τ, τ1 × . . .× τn, [x1, . . . , xn], {S})))}
/ ∗ ∗logtype(τ1 × . . .× τn → τ) ∗ ∗/ τ ′ f(τ ′1 x1, . . . , τ ′n xn) {S} {Q}.

A three-stage method of C program verification 27

7.4. Statements

Labeled statements. The rule for a labeled statement has the form:
{Inv(L)}S {Q}
{Inv(L)} L : S {Q}

The block statement. The rule for a block statement has the form:
{P}S{Q }
{P} {S} {Q}

The null statement. The axiom for a null statement has the form:

{Q} ; {Q}
Selection statements. Selection statements of the C-kernel language in-
clude only if statements:

{P ∧ cast(val(e, MD), type(e), int) 6= 0}S1 {Q}
{P ∧ cast(val(e, MD), type(e), int) = 0}S2 {Q}

{P} if(e) S1 else S2 {Q}
Iteration statements. Iteration statements of the C-kernel language in-
clude only while statements. The induction principle is used for definition of
iteration statements, i. e. it is supposed that the invariant property INV is
true after each iteration of the iteration statement:

{INV ∧ cast(val(e, MD), type(e), int) 6= 0}S {INV}
{INV}while(e) S {INV ∧ cast(val(e, MD), type(e), int) = 0}

Jump statements. Jump statements of the C-kernel language are re-
stricted only by statements goto and return. The rule for a goto statement
has the form:

{Inv(L)} goto L; {false}
Semantics of a return statement is defined by two axioms for the state-

ment with an argument and without it, respectively. The axiom for a return
statement with an argument exits the current call of a function and trans-
fers control to the point in which the postcondition of the function is true,
returning the value in the metavariable Val:

{Post(f)(MD ← upd(MD, (x1, . . . , xm), (a1, . . . , am)))
(Val ← cast(val(e, MD), type(e), τ))}

/ ∗ ∗ rettype(τ) name(f) autovar(x1, . . . , xm) autovarval(a1, . . . , am) ∗ ∗/
return e; {false}.

The axiom for a return statement without an argument exits the current call
of a function and transfers control to the point in which the postcondition
of the function is true

28 I. S. Anureev

{Post(f)(MD ← upd(MD, (x1, . . . , xm), (a1, . . . , am)))}
/ ∗ ∗ autovar(x1, . . . , xm) autovarval(a1, . . . , am) ∗ ∗/ return; {false}.

7.5. Other rules

The consequence rule. The consequence rule has the form:

P ⇒ R {R}S {T} T ⇒ Q

{P} S {Q}
The sequence rule. Let T and T′ be nonempty sequences of statements,
declarations and auxiliary constructs. The sequence rule has the following
form:

{P}T {R} {R}T′ {Q}
{P}T T′ {Q}

Program. The rule for a program Prgm(T) consisting of the sequence T of
declarations has the form:

{Pre(f)(MD ← upd(MD, (x1, . . . , xm), (argv1, . . . , argvn, an+1, . . . , am)))}
S {Post(f)(MD ← upd(MD, (x1, . . . , xm), (a1, . . . , am)))}

for all declarations
/ ∗ ∗ name(f) autovar(x1, . . . , xm)

logtype(τ1 × . . .× τn → τ) autovarval(a1, . . . , am) ∗ ∗/ e {S}
of functions defined in T, except the main function
{P} delPrgVar(y1, . . . , yk) T Smain

delPrgVar(y1, . . . , yk, z1, . . . , zn) {Q}
{P} / ∗ prgvar(y1, . . . , yk) mainpar(z1, . . . , zl) ∗ / Prgm(T) {Q}

where {Smain} is a body of the main function. The parameters z1, . . . , zl of
the main function specify the program parameters. The auxiliary construct
delPrgVar releases memory used by program variables:

{Q(MD ← upd(MD, (y1, . . . , yk), ⊥))} delPrgVar(y1, . . . , yk) {Q}

8. Conclusion

A three-stage method of C program verification has been presented. It is
applied to C-light subset of the C language, that has formal operational
semantics and covers a major part of C. At the first stage, a C-light program
is brought to its normal form. This form is the result of some kind of static
analysis that allows us to simplify the follow-up stages of verification. At the
second stage, the normal form is translated into an intermediate language
C-kernel in order to eliminate some C-light constructs difficult for axiomatic
semantics, as well as to design axiomatic semantics in a more compact and
transparent form. At the third stage, verification conditions are generated
by means of the rules of C-kernel axiomatic semantics.

A three-stage method of C program verification 29

References

[1] Nepomniashy V.A., Anureev I.S., Promsky A.V. Verification-Oriented Lan-
guage C-light and Its Structural Operational Semantics // Proc. of Conf.
“Perspectives of System Informatics”. – Lect. Notes Comput. Sci. – 2003 –
Vol. 2890. – P. 1–5.

[2] Nepomniaschy V.A., Anureev I.S., Michailov I.N., Promsky A.V. Towards Ver-
ification of C Programs. C-Light Language and Its Formal Semantics // Pro-
gramming and Computer Software. – 2002. – N 28(6). – P. 314–323.

[3] Nepomniaschy V.A., Anureev I.S., Promsky A.V. Towards Verification of C
Programs. С-light and Its Transformation Semantics // Problems in Program-
ming. – 2006. – N 2-3. – P. 359–368. (In Russian).

[4] Nepomniaschy V.A., Anureev I.S., Promsky A.V. Towards Verification of C
Programs. Axiomatic Semantics of the C-kernel Language // Programming
and Computer Software. – 2003. – N 29(6). – P. 338–350.

[5] Programming languages – C. – ISO/IEC 9899: 1999. – 1999. – 566 p.

30

