
Bull. Nov. Comp.Center, Comp. Science, 29 (2009), 1–16
c© 2009 NCC Publisher

Context machines as formalism
for specification of dynamic systems∗

I. S. Anureev

Abstract. An approach to the development of easy-to-use operational specifica-
tions of dynamic systems is presented. It is based on the formalism of context
machines and the language of description of context machines CML. The main no-
tions of the theory of context machines are defined. Classification of general-purpose
contexts is suggested. The approach is illustrated by examples of specifications of
light-weight dynamic systems.

1. Introduction

Construction of formal operational specification of dynamic systems is a
necessary condition for their understanding and analysis. Transition systems
are a universal formalism used for this.

A transition system is a pair (st, tr), where st is a set of states, tr is
a subset of the Cartesian product st × st, called a transition relation. The
property (σ, σ1) ∈ tr represent the fact that there is a transition from
the state σ to the state σ1.

A merit of this formalism is its simplicity. However, it entails the fact
that increasing complexity of a dynamic system makes its specification cum-
bersome and difficult to understand.

In this paper, an extension of transition systems — context machines —
is presented. This extension was designed in accordance with the following
requirements:

1. Universality. Context machines should be applicable in any range
where transition systems are applied.

2. Ontological tuning to application domain. Context machines should
provide means for creating and managing ontologies to adapt them (context
machines) to a specific application domain.

3. Reusability. Components of context machines should be reusable.
4. Language support. There should be a language for description of con-

text machines. This requirement makes it possible to bring the development
of formal specifications of dynamic systems up to the technological level.

The paper has the following structure. A formal definition of context ma-
chines is given in Section 2. Kinds and properties of contexts are considered

∗This research is partially supported by RFBR grant 09-01-00361-а and integration
project RAN 2/12.



2 I. S. Anureev

in Section 3. Two case studies — specification of an alarm-clock and develop-
ment of operational semantics of a programming language — are presented
in Sections 4 and 5. Comparison of context machines with other extensions
of transition systems is made in Section 6.

2. Context machines

Context machines allow us to describe the following general characteristics
of elements of specified dynamic systems: representations (by forms), values
(by form interpretations), polysemy (by interpretation contexts) and func-
tionalities (by relative form interpretations).

Formally a context machine cm is a tuple

(st, frm, fvs, ic, sem, rsem),

where st is a set of states, frm is a set of forms, fvs is a set of form values,
ic is a set of interpretation contexts, sem is a form interpretation, rsem is a
relative form interpretation.

Let us consider each element of the tuple in detail.
Let cm specify a dynamic system ds.
The set st specifies the states of the system ds.
A form is a way to get information about the states of the system ds.

According to this way, information is extracted as a result of interpretation
of the form in some context. Interpretation of a form in different states
can differ. Interpretation of a form can change a state of the system ds.
Pairs consisting of a form and a context define different aspects in which the
system ds can be analysed.

The set ic specifies the names of contexts in which forms can be inter-
preted.

The interpretation sem is a function that takes a triple (A, σ, τ), where
A is a form, σ is a state, τ is a context, and returns a nonempty set S of
pairs (v, σ1), where v is an element of the set fvs, σ1 is a state. This func-
tion defines ways of form interpretations in accordance with interpretation
contexts. The set S is called semantics of the form A in the state σ in the
context τ . The first elements v of pairs of the set S are called the values of
the form A in the state σ in the context τ . The second elements σ1 are called
the resulting states of the form A in the state σ in the context τ .

The relative interpretation rsem is a function that takes a tuple (A, σ,
τ, B), where A and B are forms, σ is a state, and returns a nonempty set
S of pairs (v, σ1), where v is an element of the set fvs, σ1 is a state. A
relative interpretation defines semantics of a form w.r.t. some other form.
The set S is called semantics of the form A w.r.t. the form B in the state σ in
the context τ . The first elements v of pairs of the set S are called the values



Context machines as formalism for specification of dynamic systems 3

of the form A w.r.t. the form B in the state σ in the context τ . The second
elements σ1 are called the resulting states of the form A w.r.t. the form B in
the state σ in the context τ .

The form A can be considered as functionality of the form B. Access to
functionality of a form is performed by the operation of functionality access
(denoted by .). It is defined as sem(B.A, σ, τ) = rsem(A, σ, τ, B).

3. General-purpose contexts

Reuse of context machine components is one of the requirements imposed on
context machines. Recognition of general-purpose interpretation contexts,
which express general properties of dynamic system specifications, is one of
the ways of reuse. In this section, general-purpose contexts and interpreta-
tion of forms in them are defined.

Five kinds of forms defined by general-purpose interpretation contexts
are considered: transitions (§1), forms (§4), objects (§5), formulas (§11) and
concepts (§15). Each of them is characterized by some contexts specifying
different aspects of form interpretation.

§1. There are two contexts of transition interpretation.
§2. The context transition is the most general:

sem(A, σ, transition) ⊆ fvs × st.

All other contexts are its subcontexts.
Transitions, defined by this context, are similar to transitions in labelled

transition systems (§30). In this case forms act as labels. The interpreta-
tion sem(A, σ, transition) of the form A in the state σ has the following
property: there is a transition labeled by the form A from the state σ to the
resulting states of the form A in the state σ in the context transition. All
notions related to labeled transitions carry over the transitions defined by
the context transition.

§3. In the context transition/transitions, a transition returns a set
of transitions that define it:

sem(A, σ, transition/transitions) = {(B, σ)},

where B ⊆frm. The following property holds for this context:

D ∈ sem(A, σ, transition) ⇔
D ∈ sem(C, σ, transition) for some C ∈ B.

§4. There is only one context form for the kind form. In this context the
value of a form is the form itself:



4 I. S. Anureev

sem(A, σ, form) = {(A, σ)}.

§5. There are five contexts of object interpretation.
§6. In the context object, an object returns its values:

sem(A, σ, object) ⊆ frm × st.

Let (B, σ1) ∈sem(A, σ, object). The form B is called the value of
the object A in the state σ for a transition to the state σ1. The form C is
called a value of the object A in the state σ, if C is the value of the object A
in the state σ for a transition to some state σ2.

§7. In the context object/objects, an object returns a set of objects
that define it:

sem(A, σ, object/objects) = {(B, σ)}.

where B ⊆frm. The following property holds for this context:

D ∈ sem(A, σ, object) ⇔
D ∈ sem(C, σ, object) for some C ∈ B.

§8. In the context object/typed/concepts, an object returns a set of
concepts that define the type of its values:

sem(A, σ, object/typed/concepts) = {(B, σ)},

where B ⊆frm. The following property holds for this context:

V is a value of the object A in the state σ ⇒
V is an instance of the concept C in the state σ for some C ∈ B.

§9. In the context object/typed/formulas, an object returns a set of
formulas that define the type of its values:

sem(A, σ, object/typed/formulas) = {(B, σ)},

where B ⊆frm →frm. The following property holds for this context:

V is a value of the object A in the state σ ⇒
the formula C(V) is true in the state σ for some C ∈ B.

§10. Let pset(S) denote a set of all subsets of the set S. In the context
object/functional, an object returns functions specifying the actions that
are performed when a value of the object is set or unset:



Context machines as formalism for specification of dynamic systems 5

sem(A, σ, object/functional) = {((add, delete), σ)},

where the functions add and delete belong to the set frm ×st →pset(st).
The function add defines the actions that are performed when the object A is
set to a value. These actions move the context system from the state σ1 to
states from the set add(B, σ1). Here σ1 is a state in which the object A is set
to the value B. The function delete defines the actions that are performed
when a value of the object A is unset. These actions move the context system
from the state σ1 to states from the set delete(B, σ1). Here σ1 is a state
in which the value B of the object A is unset.

§11. There are three contexts of formula interpretation.
§12. In the context formula, a formula returns true or false:

sem(A, σ, formula) ⊆ {true} × st

or

sem(A, σ, formula) ⊆ {false} × st.

Let (B, σ1) ∈sem(A, σ, object). The form B is called the value of the
formula A in the state σ. The formula A is true in the state σ if true is its
value in the state σ. The formula A is false in the state σ if false is its value
in the state σ.

§13. In the context formula/formulas/or, a formula returns a set of
formulas the disjunction of which defines this formula:

sem(A, σ, formula/formulas/or) = {(B, σ)},

where B ⊆frm. The following property holds for this context:

D ∈ sem(A, σ, formula) ⇔
D ∈ sem(C, σ, formula) for some C ∈ B.

§14. In the context formula/formulas/and, a formula returns a set of
formulas the conjunction of which defines this formula:

sem(A, σ, formula/formulas/and) = {(B, σ)},

where B ⊆frm. The following property holds for this context:

D ∈ sem(A, σ, formula) ⇔
D ∈ sem(C, σ, formula) for all C ∈ B.



6 I. S. Anureev

§15. There are six contexts of concept interpretation.
§16. In the context concept, a concept returns its content:

sem(A, σ, concept) ⊆ pset(frm) × st.

Let (B, σ1) ∈sem(A, σ, concept). The set B is called the content of
the concept A in the state σ for a transition to the state σ1. The elements
of the content of the concept A in the state σ for a transition to the state
σ1 are called instances of the concept A in the state σ for a transition to the
state σ1. A form C is an instance of the concept A in the state σ if C is an
instance of the concept A in the state σ for a transition to some state σ2.

Since instances of a concept are arbitrary forms, depending on interpreta-
tions of these forms, it is possible to form the concepts that describe objects,
transitions, formulas, and so on.

§17. In the context concept/formulas/or, a concept returns a set of
formulas the disjunction of which defines this concept:

sem(A, σ, concept/formulas/or) = {(B, σ)},

where B ⊆frm →frm. The following property holds for this context:

C is an instance of the concept A in the state σ ⇔
the formula D(C) is true in the state σ for some D ∈ B.

§18. In the context concept/formulas/and, a concept returns a set of
formulas the conjunction of which defines this concept:

sem(A, σ, concept/formulas/and) = {(B, σ)},

where B ⊆frm →frm. The following property holds for this context:

C is an instance of the concept A in the state σ ⇔
the formula D(C) is true in the state σ for all D ∈ B.

§19. In the context concept/concepts/or, a concept returns a set of
concepts the union of which defines this concept:

sem(A, σ, concept/concepts/or) = {(B, σ)},

where B ⊆frm. The following property holds for this context:

(C, σ1) ∈ sem(A, σ, concept) ⇔
(C, σ1) ∈ sem(D, σ, concept) for some D ∈ B.



Context machines as formalism for specification of dynamic systems 7

§20. In the context concept/concepts/and, a concept returns a set of
concepts the difference of which defines this concept:

sem(A, σ, concept/concepts/and) = {(B, σ)},

where B ⊆frm. The following property holds for this context:

(C, σ1) ∈ sem(A, σ, concept) ⇔
(C, σ1) ∈ sem(D, σ, concept) for all D ∈ B.

§21. In the context concept/functional, a concept returns the functions
specifying the actions that are performed when a form is added to or deleted
from the concept:

sem(A, σ, functional concept) = {((add, delete), σ)},

where the functions add and delete belong to the set frm ×st →pset(st).
The function add defines the actions that are performed when a form is added
to the content of the concept A. These actions move the context system from
the state σ1 to the states from the set add(B, σ1). Here σ1 is a state in
which the form B is added to the content of the concept A. The function
delete defines actions that are performed when a form is deleted from the
content of the concept A. These actions move the context system from the
state σ1 to the states from the set delete(B, σ1). Here σ1 is a state in
which the form B is deleted from the content of the concept A.

Functional concepts are applied to decide the problem of multiple binding
(unbinding) a set of functionalities to (from) a set of entities. In this case a set
of entities is considered as the content of a functional concept. With respect
to the above concept A, functionalities that are bounded to (unbounded from)
the form B are defined by (relative) semantics w.r.t. the form B for the states
from the set add(B, σ1) (delete(B, σ1)), i.e. they are defined in fact by
the function add (delete). In addition, the function add can initialize the
added functionalities (for example, setting the initial value to an object).

Thus a functional concept defines a set of functionalities bounded with
forms from its content, a way of binding functionalities with the form that is
added to the content of the concept, a way of initializing these functionalities
and a way of unbinding functionalities from the form that is deleted from
the content of the concept.

If we draw an analogy with programming languages, then functional con-
cepts can be considered as classes, functionalities as elements of these classes
(fields, methods, properties and so on), contexts as types of these elements
defining their signatures and the ways of interpretations, and initialization
as initialization of these elements. In fact, functional concepts define a more



8 I. S. Anureev

abstract conceptual scheme of integration of data and actions in comparison
with classes.

Another application of functional concepts is execution of one-type ac-
tions over a set of objects.

In conclusion of this section, let us consider some properties of contexts.
§22. A form A is one-valued in the context τ , if sem(A, σ, τ) ⊆{V}

×st for some V ∈fvs. Otherwise, the form A is many-valued in the context
τ .

Proposition 1. Any form in the context formula is one-valued.
§23. A form A is determined in the context τ , if sem(A, σ, τ) ⊆fvs

×{st1} for some st1∈st. Otherwise, the form A is nondetermined in the
context τ .

Proposition 2. Any form in the context form is one-valued and deter-
mined.

Using these properties as characteristics of forms, we can define new
subcontexts: one-valued and many-valued objects, determined and nonde-
termined transitions, and so on.

4. Specification of the alarm clock

At present, a language of description of context machines called CML (Con-
text Machine Language) is being developed. In this section, application of
the CML language to specification of a simple dynamic system "alarm clock"
is considered. Constructs of this language are explained as they occur in the
specification.

The clock has three buttons: hour button, minute button and mode
button. The hour button and minute button increase the hour counter and
the minute counter by 1, respectively (on increasing the hour counter with
the value 23 or the minute counter with the value 59, the counter is zeroed
out), the mode button is used to switch clock modes, in particular, to switch
the alarm on and off. The first push of this button activates the alarm mode
in which the alarm can be set (mode alarm set). The second push activates
the hour mode with the alarm switched on (mode hour&alarm). The third
push switches off the alarm (mode hour).

Specification of the system is based on four concepts: minute values
(§24), hour values (§25), mode values (§26) and clock (§27).

§24. Instances of the concept minute values are integers from 0 to 59
defining permissible values of the minute counter. It is defined by the concept
declaration

1 (concept: minute values,
2 formula type:
3 (and:



Context machines as formalism for specification of dynamic systems 9

4 (is instance: this, concept: integer),
5 (<=: 0, this),
6 (<=: this, 59)))

Concept declarations are transitions.
Many constructs of the CML language, like concept declarations, are

of the form: X1: Y1, ... Xn: Yn,. The constructs of this form are
called structures. A structure is a sequence of fields. The field Xi: Yi,
is characterized by the name Xi and the value Yi. The last semicolon in
a structure (in the above example in line 6) can be omitted. Structures
are used to represent both data and function calls. As opposed to common
homogeneous lists of arguments of a function call in computer languages,
structures in CML provide mnemonic labels (denoted by the field names)
for arguments.

The field concept (1) specifies the name of the concept.
The field formula type (2) specifies the set of forms that can be instances

of the concept. This set is defined by formula (3). The form this (4) in
the formula refers to an instance of the concept minute values. Formula
(3) is a conjunction of three formulas (4), (5) and (6). Formula (4) states
that this is an integer (an instance of the concept integer). The field is
instance (4) specifies the form, for which it is checked whether it belongs
to a concept or not. The field concept (4) specifies this concept. Formulas
(5) and (6) state that this is an integer that is greater than or is equal to 0
and is less than or equal to 59, respectively.

§25. Instances of the concept hour values are integers from 0 to 23
defining permissible values of the hour counter. It is defined in a similar
way:

(concept: hour values,
formula type:
(and:
(is instance: this, concept: integer),
(<=: 0, this),
(<=: this, 23))

§26. The concept mode values specifies clock modes. It is defined by
the concept declaration

(concept: mode values,
formula type:

1 (element: this,
2 sequence: (alarm set) hour&alarm hour))



10 I. S. Anureev

Formula (1) means that instances of the concept mode values are elements of
sequence (2), i.e. this concept includes the forms alarm set,
hour&alarm and hour. The field element (1) specifies a form, for which
it is checked whether it belongs to the sequence or not. The field sequence
(2) specifies the sequence.

§27. Instances of the functional concept clock are clocks. It is defined
by the concept declaration

(concept: clock,
body:

1 (object: clock hour counter, type: hour values;
2 object: clock minute counter, type: minute values;
3 object: alarm hour counter, type: hour values;
4 object: alarm minute counter, type: minute values;
5 object: mode, type: mode values;
6 transition: hour button,

body:
7 (if: (=: this.mode, alarmSet);
8 then: (object: this.X, value: this.alarm hour counter),
9 else: (object: this.X, value: this.clock hour counter);
10 if: (=: this.X, 23),
11 then: (object: this.X, value: 0),
12 else: (object: this.X, value: (+: this.X, 1));
13 if: (=: this.mode, alarmSet),

then: (object: this.alarm hour counter, value: this.X),
else: (object: this.clock hour counter, value: this.X));

14 transition: minute button,
body:
(if: (=: this.mode, alarmSet);
then: (object: this.X, value: this.alarm minute counter),
else: (object: this.X, value: this.clock minute counter);
if: (=: this.X, 59),
then: (object: this.X, value: 0)
else: (object: this.X, value: (+: this.X, 1));
if: (=: this.mode, alarmSet),
then: (object: this.alarm minute counter, value: this.X),
else: (object: this.clock minute counter, value: this.X));

15 transition: mode button,
body:
(if: (=: this.mode, clock),
then: (object: this.mode, value: alarm set),
elseif: (=: this.mode, alarm set),
then: (object: this.mode, value: clock&alarm),



Context machines as formalism for specification of dynamic systems 11

else: (object: this.mode, value: clock))))

Five objects (clock hour counter, clock minute counter, alarm hour
counter, alarm minute counter, mode) and three transitions (hour button,
minute button, mode button) are bounded to instances of this concept.
They are defined by object declarations (1-5) and transition declarations (6,
14, 15), respectively. Object declarations and transition declarations are
transitions. The operation comma (;) denotes a sequential composition of
transitions.

The objects clock hour counter (1), clock minute counter (2), alarm
hour counter (3), alarm minute counter (4) define counters of hours and
minutes for the clock and alarm, respectively.

The field object in the object declaration specifies the name of the object.
The field type in the object declaration specifies the concept, instances

of which are permissible values of the object.
The concepts hour values and minute values define permissible values

for objects clock hour counter and alarm hour counter and for objects
clock minute counter and alarm minute counter, respectively.

The object mode (5) specifies the current clock mode and takes the values
alarm set, hour&alarm and hour defined by the concept mode values.

The transitions hour button (6), minute button (14) and mode button
(15) specify actions caused by pushing the corresponding clock buttons.

The field transition in the transition declaration specifies the name
of the transition. The field body in the transition declaration specifies the
actions executed by the declared transition. The value of this field is a
transition. This transition is called the body of the declared transition.

The body of the transition hour button consists of three sequentially
executed conditional transitions (7), (10) and (13).

Execution of a conditional transition is similar to execution of a condi-
tional statement in programming languages.

The field if of the conditional transition specifies the test condition.
This condition is a formula. The field then specifies the transition that is
executed if the test condition is true. The field else specifies the transition
that is executed if the test condition is false.

The conditional transition (7) sets the value of the object X bounded to
this to the current value of the hour counter for the clock or the alarm
depending on the current clock mode.

The test condition (7) states that alarm set is the current clock mode.
The object meaning (8) sets the value of the object X to the value of the

alarm hour counter. Object meanings are transitions. The field object of
this transition specifies the name of the object to which the value is set. The
field value specifies the bounded value.



12 I. S. Anureev

In a similar way the object meaning (9) sets the value of the object X to
the value of the clock hour counter.

Let us note that binding of the instance of the concept clock with the
object X is not defined by the declaration of this concept. This local binding
with the concrete instance is set by the object meaning.

The conditional transition (10) increases the value of the object X by 1.
Depending on the value of the test condition (10), transition (11) that zeroes
out the value of the object X or transition (12) that increases the value of
the object X by 1 is executed.

The conditional transition (13) sets the value of the hour counter for the
clock or the alarm (depending on the current clock mode) to the value of the
object X.

The transition hour button (14) is defined by analogy with the transition
minute button (6).

The transition mode button (15) switches the clock modes. It models
pushing the button mode button. Its body is a conditional transition. A
peculiarity of this conditional transition is that it has more than one test
condition. The first test condition is specified by the field if as usual. The
remaining test conditions are specified by fields elseif. The test conditions
are checked in the textual order. The next condition is checked if the earlier
conditions are false.

5. Operational semantics of a programming language

Context machines are handy for description of operational semantics of pro-
gramming languages. The idea of semantics development is to specify ab-
stract machines, which execute programming language constructs, by context
machines.

This idea is illustrated by the example of one operational entity and one
declarative entity of the C# language. The if statement (§28) is chosen as
the operational entity and a local variable (§29) is chosen as the declarative
entity. Other C# entities are specified in a similar way.

A concept and a transition are associated with each kind of statements
of a programming language. Instances of the concept are all statements of
this kind. The transition specifies the action executed by the statements of
this kind. The concept is functional as usual and includes the description of
objects that define structural components of statements of the kind.

§28. The concept if statement is defined by the concept declaration

(concept: if statement,
body:

1 (object: condition, type: boolean expression;
2 object: then statement, type: statement;



Context machines as formalism for specification of dynamic systems 13

3 object: else statement, type: statement))

The content of the concept includes if statements. Three objects: condition
(1), then statement (2) and else statement (3) are bounded to instances
of this concept.

The object condition (1) specifies the governing condition of the if
statement, which is a boolean expression. Boolean expressions are in their
turn defined by the concept boolean expression.

The objects then statement (2) and else statement (3) specify the
then branch and the else branch of the if statement, that are statements
of the C# language. Statements of the C# language are defined by the
concept statement.

The transition specifying the action of the if statement is defined by the
transition declaration

1 (transition: A,
2 parameter: A, type: if statement,

body:
3 (object: A.X, value: A.condition;
4 if: (is instance: A.X, jump),
5 then: (return: A.X),
6 elseif: (=: A.X, true),
7 then: A.then statement,
8 else: A.else statement))

The field parameter (2) declares that the form A is a parameter of the
transition A, and declaration (1) is parameterized. A parameterized transi-
tion declaration describes a set of transitions that is obtained by substitutions
of concrete values of parameters.

The field type (2) that follows the field parameter specifies a concept
that defines the values of a parameter. In this case, these values are instances
of the concept if statement. Thus, the transition declaration describes an
action executed by if statements (instances of the concept if statement).

Transition (3) from the body of transition (1) sets the value of the object
X to the value of the value-effect transition A.condition (the result of the
computation of the governing expression of the if statement.

Let us note that the object X is bounded to the if statement A. The
trick of binding objects to transitions is used to store intermediate values
appeared during transition execution. In this case, the object X stores the
result of computation of the governing expression of the if statement.

Then the conditional transition (4) is executed. The first test condition
(4) states that the value of the object X is an instance of the concept jump.



14 I. S. Anureev

The concept jump specifies the forms that are generated by jump statements
of the C# language (statements return, break, continue, goto, throw).

If this condition is true, transition (5) is executed. This transition ter-
minates the execution of the if statement, returning the value of the object
X (i.e. an instance of the concept jump) as a result. The field return (5)
specifies the returning value.

The second test condition (6) states that the value of the object X is
true. If this condition is true, transition (7) (i.e. the branch then of the if
statement) is executed.

Otherwise, transition (8) (i.e. the branch else of the if statement) is
executed.

§29. The concept local variable is defined by the concept declaration

(concept: local variable,
body:

1 (object: declaration, type: local variable declaration;
2 object: name, value: identifier;
3 object: value, type: C# values;
4 object: type, body: this.declaration.type;
5 object: scope, value: statement))

Instances of this concept are bounded to 5 objects: declaration (1), name
(2), value (3), type (4) and scope (5).

The object declaration (1) specifies a local variable declaration in which
this local variable is defined. The values of this object are local variable
declarations that are defined by the concept local variable declaration.

The object name (2) specifies the name of the local variable. The values
of this object are identifiers that are defined by the concept identifier.

The object value (3) specifies the value of the local variable. The values
of this object are possible C# values that are defined by the concept C#
values.

The object type is defined by the object definition (4). The field body
of this definition specifies an object. Computation of this object returns
the value of the object type. The object this.declaration.type defines
that the type of the local variable this is a type which is described in its
declaration this.declaration.

The object scope (5) specifies the scope of the local variable. The value
of this object is a statement in which the local variable is defined.

6. Other extensions of transition systems

In this section context machines are compared with three extensions of tran-
sition systems: labelled transition systems (§30), abstract state machines



Context machines as formalism for specification of dynamic systems 15

(§31) and ontological transition systems (§32). These extensions are selected
as they meet the universality requirement.

§30. A labelled transition system is a triple (st, lab, tr), where st is a
set of states, lab is a set of labels, tr is a subset of the Cartesian product st
× lab × st called a labelled transition relation. The fact that (σ, l, σ1)
∈ trmeans that there is a transition from the state σ to the state σ1 with the
label l. Labelled transition systems enrich transition systems due to different
interpretations of labels. Typical uses of labels include representation of
input expected, conditions that should be true to trigger the transition,
or actions performed during the transition. The label effect is reached by
context machines due to the context transition (§2).

§31. Abstract state machines (earlier called evolving algebras) [1, 2] are
extensions of transition systems in which states are algebras. Examples of
various applications of absract state machines can be found in [3]. The
astract state machine approach to specification of dynamic systems is sup-
ported by the languages AsmL [4] and XasM [5].

The expressive power of abstract state machines and context machines as
applied to formal specifications of dynamic systems are the same. Selection
of a proper algebra signature of an abstract state machine makes possible
to bring closer formal specification of the dynamic system that is based on
the abstract state machine with its natural conceptual structure. The same
effect is achieved by context machines due to the context concept.

Distinction between these formalisms is most likely in a mode of thought.
Specifications based on abstract state machines are thought in terms of func-
tions (of algebras) whereas specifications based on context machines are
thought in terms of objects (forms).

§32. Context machines are further development of ontological transition
systems [6] that are a hybrid of transition systems and ontological models.
Ontological transition systems are straight modelled by context machines
with two context transition and concept. CML is in its turn a further de-
velopment of the OTSL language (Ontological Transition System Language)
[7, 8].

7. Conclusion

We have proposed an extension of transition systems — context machines —
and compared them with other extensions of transition systems. In introduc-
tion, the requirements to the design of context machines were formulated.
Now we can justify that context machines meet these requirements:

1. Universality. Context machines are a universal formalism for specifi-
cation of dynamic systems to the same extent as transition systems, since
transition systems are straight modelled by context machines with the con-
text transition.



16 I. S. Anureev

2. Ontological tuning to application domain. A formalism of ontological
transition systems was specially developed to manage evolving ontologies
(add and eliminate concepts and relations, change their content and so on).
As ontological transition systems are straight modelled by context systems
with two contexts transition and concept (§32), we can describe ontologies
of application domains by context machines too.

3. Reusability. There are two kinds of context machine reuse. Reuse of
forms makes possible to represent related notions by structurally identical
forms. Reuse of contexts (and their associated form interpretations) makes
possible to accumulate and share knowledge of general semantic aspects of
dynamic systems.

4. Language support. Context machine design is supported by the special
language CML that is being developed.

At present the context machine approach is applied to sequential (de-
terministic and nondeterministic) dynamic systems. It is planned to extend
this approach over distributed and concurrent systems.

We see two main areas of application of context machines: the devel-
opment of formal semantics of industrial programming languages (C, C++,
C# and so on) and specification of light-weight information systems.

References

[1] Gurevich Yu. Abstract state machines: An Overview of the Project in “Founda-
tions of Information and Knowledge Systems” // Lect. Notes Comput. Sci. –—
2004. –— Vol. 2942. –— P. 6–13.

[2] Gurevich Y. Evolving Algebras // Lipari Guide. Specification and Validation
Methods. –— Oxford University Press, 1995. –— P. 9-36.

[3] Huggins J. Abstract State Machines Web Page. —
http://www.eecs.umich.edu/gasm.

[4] AsmL: The Abstract State Machine Language. Reference Manual, 2002. –—
http://research.microsoft.com/fse/asml/doc/AsmL2_Reference.doc.

[5] XasM — An Extensible, Component-Based Abstract State Machines Lan-
guage. –— http://xasm.sourceforge.net/XasmAnl00/XasmAnl00.html

[6] Anureev I.S. Ontological Transition Systems // Joint NCC&IIS Bulletin. Ser.
Comput. Sci. –— 2007. –— Vol. 26 –— P. 1–18.

[7] Anureev I.S. A Language of Actions in Ontological Transition Systems // Joint
NCC&IIS Bulletin. Ser. Comput. Sci. –— 2007. -—- Vol. 26. —– P. 19–38.

[8] Anureev I.S. Ontological models in OTSL // Problems in Programming. –—
2008. –— N 2–3. –— P. 41–49.


