
Bull. Nov. Comp.Center, Comp. Science, 26 (2007), 1–17
c© 2007 NCC Publisher

Ontological transition systems

Igor S. Anureev

Abstract. A new class of transition systems, ontological transition systems is pre-
sented. They enrich transition systems with ontological entities. In the framework
of development of a language of ontological transition systems OTSL, a sublan-
guage of formulas is defined. Formulas are used to specify ontological entities of
ontological transition systems.

1. Introduction

The state transition systems are a well-known formalism for description
of operational semantics of programming lanquages and program models.
A common way to rigorously define the operational semantics, pioneered
by Gordon Plotkin in his paper “A Structural Approach to Operational
Semantics” [1], is to provide a state transition system for the language of
interest.

A state transition system is defined as an abstract machine which con-
sists of a set of states and transitions between states. On the one hand,
simplicity of definition of these systems makes them a universal formalism
for description of the behaviour of systems of different nature (algorithms,
programs, program models, computer systems, and so on). On the other
hand, it leads to a loss of the conceptual structure of systems in their de-
scriptions.

A natural question is how to enrich the states or/and transitions of tran-
sition systems to make these systems more conceptually capacious, having
preserved their generality.

A logical-algebraic approach to solution of this problem was suggested by
Yuri Gurevich, based around the concept of an abstract state machine [2, 3].
Abstract state machines (ASMs), formerly known as evolving algebras, are
a special kind of transition systems. The states of ASMs can be arbitrary
algebras. The choice of an appropriate algebra signature allows us to adapt
ASMs to problem domains. The ASM approach has already proven to be
suitable for large-scale specifications of realistic programming languages [4,
5, 6, 7, 8, 9]. Other applications of ASMs to various domains can be found
in [10].

The ASM theory is the basis for Abstract State Machine Language [11]
developed by Microsoft and XASM (Anlauff’s eXtensible ASMs) [12], an
open source implementation.

2 I. S. Anureev

We suggest the ontological approach to solution of this problem, based
around the concept of an ontological transition system. Ontological transi-
tion systems (OTSs) are a special kind of transition systems. An OTS can
be regarded as a transition system which has the following properties:

• There is a conceptual structure (a sets of concepts and a set of rela-
tions) which is common for all states of the transition system.

• There is a function of retrieving the content of this conceptual struc-
ture from the states of the transition system.

Formally, an ontological transition system consists of a set of objects, a
transition system, an ontology and a function, called content retrieval, which
defines the content of concepts and relations for each state of the transition
system.

On the basis of OTSs, the ontological transition system language OTSL
has been developed. It includes two sublanguages: a language of actions and
a language of formulas. Actions specify the transitions of OTSs. Formulas
specify the ontological entities of OTSs. In this paper, the language of
formulas is presented. A description of the language of actions can be found
in [13].

The paper has the following structure. Section 2 presents preliminary
notions and denotations used in this paper. Section 3 defines the ontological
transition systems and related entities. Section 4 sketches out the main
notions of the OTSL language. The base constructs of the language of
formulas such as terms, concept expressions and formulas are presented in
Sections 5, 6, and 7, respectively. Section 8 presents additional constructs
which can be used in formulas. On the one hand, these constructs are
reducible to the base formula constructs. On the other hand, they enlarge
a conceptual capacity of the language of formulas. Sections 9 and 10 define
concept declarations and relation declarations, respectively. They are used
to specify ontological entities of OTSs (concepts, relations, the content of
concepts and relations).

This research is partially supported by the grant 06-01-00464a from
RFBR, and by the integration grant 14 and the grant for young scientists
from SB RAS.

2. Preliminaries

This section presents preliminary notions and denotations used in this paper.
Set-theoretical Denotations. Set-theoretical denotations used in this
paper are the following:

• ∅ denotes the empty set;

• X ∈ Y denotes that an element X belongs to a set Y ;

Ontological transition systems 3

• X ∪ Y , X ∩ Y , and X \ Y denote a union, intersection and difference
of sets X and Y , respectively;

• X × Y denotes the Cartesian product of sets X and Y ;

• 2X denotes the set of all subsets of a set X;

• X → Y denotes the set of all total functions from X to Y ;

• X → Y ⊕ X ′ → Y ′, where X ′ ∩ Y ′ = ∅, denotes the set of all total
functions which act from X to Y and from X ′ to Y ′.

Logical Denotations. Logical denotations used in this paper are the fol-
lowing:

• bool denotes the set bool = {true, false};
• ∀X ∈ Y (A) denotes that for all X ∈ Y the property A is true;

• ∃X ∈ Y (A) denotes that there is X ∈ Y such that the property A is
true;

• @X ∈ Y (A) denotes that there is no X ∈ Y such that the property A
is true;

• ∗[X1 ∈ Y1, ..., Xn ∈ Yn](A), where ∗ ∈ {∀, ∃, @}, denotes ∗X1 ∈ Y1...
∗Xn ∈ Yn(A);

• ¬A, A∧B, and A∨B denote negation of the property A and conjunc-
tion and disjunction of the properties A and B, respectively.

Entities. In this paper, an entity is often defined by the name of a set
which contains all instances of the entity. This name is also used as a
nonterminal in grammar rules. Under the agreement, it starts with a small
letter. The name of an element of the set coincides with the name of the
set (possibly with additional indexes and strokes) except for the first letter
which is capitalized. For example, let ob be a set of objects (it defines the
entity “object”). Then Ob, Ob′ and Ob2 are objects. In grammar rules
the following denotations are used: ::= means “has the form”, | separates
alternatives and means “or”.
Positions and Substitutions. A number of entities in this paper are
defined by grammar rules. These entities can be represented in the form of
labeled trees. The notions of position and substitution are defined for this
representation. The record T [L1 ← T1, ..., Ln ← Tn] denotes a tree which
is obtained from the tree T by replacement of all occurences of leaves with
the labels L1, ..., Ln by the trees T1, ..., Tn, respectively. The record Tq

denotes a subtree of the tree T in the position q. Let pos(T) be the set
of all positions in the tree T . The relation ≺ is defined on the set pos(T).
The record q ≺ q′ means that Aq is a subtree of Aq′ . Let cPos(T) be the
set of all positions of childrens of the tree T . The relation ≺c is defined

4 I. S. Anureev

on the set cPos(T). The record q ≺c q′ means that Aq is to the left from
Aq′ . The record T [T ′]q denotes a tree which is obtained from the tree T by
replacement of a subtree in the position q by the tree T ′.

3. Ontological Transition Systems

This section defines ontological transition systems and related entities.
Transition Systems. Transition systems can be labelled or unlabelled.
Unlabelled Transition Systems. An unlabelled transition system tS is
defined as a pair (st, tr). The set st is called a set of states. The function

tr ∈ st× st → bool

is called a transition relation. The property tr(St, St′) means that there is
a transition from the state St to the state St′.
Labelled Transition Systems. A labelled transition system tS is defined
as a triple (l, st, tr). The set l is called a set of labels. The set st is called a
set of states. The function

tr ∈ st× st → (l → bool)

is called a transition relation. The property tr(St, St)(L) means that there
is a transition from the state St to the state St′ with the label L.
Ontologies. An ontology of a system describes its conceptual structure. It
consists of a set of concepts and a set of relations. Concepts define the kinds
of sequences of objects of the system. In particular, they define the kinds of
objects of the system. Relations define the kinds of interrelations between
objects.

Formally, an ontology ont is defined as a pair (co, re). The set co is called
a set of concepts of the ontology ont. The set re is called a set of relations
of the ontology ont.
Ontological Transition Systems. An ontological transition system (OTS
for short) consists of a set of objects, a transition system, an ontology and a
function, called content retrieval, which define the content of concepts and
the content of relations for each state of the transition system. The content
of a concept is defined as a subset of the set of sequences of objects. The
content of a relation is defined as a binary relation on sequences of objects.

Formally, an OTS is defined as a quadruple (ob, tr, ont, cont). The set ob
is called a set of objects. Let se be a set of sequences of objects. The set st
of states of the OTS is defined as follows:

st = ob → se.

The function

Ontological transition systems 5

cont ∈ co× st → 2se ⊕ re× st → 2se×se

is called a content retrieval. The set cont(Co, St) is called a content of the
concept Co in the state St. The set cont(Re, St) is called a content of the
relation Re in the state St. The sequence St(Ob) is called a content of the
object Ob in the state St. The content of an object defines its structure and
objects which interrelate with it. The content of objects is used to retrieve
information about the content of concepts and relations.

4. Introduction to OTSL

This section sketches out the main notions of the ontological transition sys-
tem language OTSL.
Keywords. The set kW of keywords is built in the following way:

kW ::= ? | ! | #... | = | ∼ | : | ; | @ | [|] | { | }
| (|) | () | and | or | not | implies | iff | := | +=,

where #... is any sequence of letters and digits from the set

{a, . . . , z, A, . . . , Z, 0, . . . , 9}

starting with # except for #i and #o. Keywords are used in constructs of
OTSL.
Objects. The set ob of objects is used to present the objects of OTSs. It is
an arbitrary set such that ob ∩ kW = ∅.
Special Objects. The set sOb ⊆ ob of special objects is built in the follow-
ing way:

sOb ::= true | new | val | #i | #o | o | s | e | ns | eo.

Special objects represent the specific-purpose objects which are common for
all OTSs.
Sequences. The sets se and nSe of sequences and nonempty sequences,
respectively, are built in the following way:

se ::= () | nSe,
nSe ::= ob | ob nSe.

Let us note that, by definition, ob ⊆ se∧ob ⊆ nSe. The sequence () is called
then empty sequence.
Concatenation. The concatenation function con ∈ se× se → se is defined
as follows:

6 I. S. Anureev

con(NSe, NSe′) = NSe NSe′ ∧ con((), Se) = con(Se, ()) = Se.

Equalities. The equality relation = on sequences is defined as follows:
Se = Se′ is true, if Se is equal to Se′, otherwise, it is false.
Weak Equalities. The weak equality relation ∼ on sequences is defined as
follows: Se ∼ Se′ is true, if the sequence Se is a permutation of the sequence
Se′, otherwise, it is false.
Concepts and Relations. Concepts and relations are objects:

co ⊆ ob ∧ re ⊆ ob.

Basic concepts. There are five basic concepts in OTSL: o, s, e, ns, and
eo. Their content does not depend on a state:

∀St(cont(o, St) = ob∧
cont(s, St) = se∧
cont(e, St) = {()}∧
cont(ns, St) = nSe∧
cont(eo, St) = ob ∪ {()}).

Actions. The set act of actions is defined in paper [13] which describes
the sublanguage of actions of OTSL. Actions are used as labels in transition
relations.
OTS declarations. OTS declarations are used to specify OTSs. The sets
otsDec and otsDecMem of OTS declarations and OTS declaration mem-
bers, respectively, are built in the following way:

otsDec ::= otsDecMem | otsDecMem otsDec.

otsDecMem ::= coDec | reDec | trDec.

The sets coDec, and reDec of concept declarations and relation declarations,
respectively, are defined in sections 9 and 10 below. The definition of the
set trDec of transition declarations can be found in the description of the
language of actions [13].

5. Terms

This section defines terms and the related entities.
Terms. The set te of terms is built in the following way:

te ::= eSe | ob | obC | teCom.

The object content obC and term composition teCom are defined below.
Term evaluation. The function val ∈ st → (te → se) is called a term
evaluation. This function defines the semantics of terms. The sequence
val(St)(Te) is called the value of the term Te in the state St.
The Empty Sequence. The value of the empty sequence is the empty
sequence itself:

Ontological transition systems 7

val(St)(()) = ().

Objects. The value of an object is the object itself:

val(St)(Ob) = Ob.

The Object Content. The object content is defined as follows:

obC ::=? ob.

The value of the object content ?Ob in a state St is the content of the object
Ob in the state St:

val(St)(?Ob) = St(Ob).

Term Composition. The term Composition teCom is defined as follows:

teCom ::= te te.

The value of a composition of terms is concatenation of the values of the
terms:

val(St)(Te Te′) = con(val(St)(Te), val(St)(Te′)).

6. Concept expressions

This section defines concept expressions and the related entities.
Concept expressions. The set coExp of concept expressions is built in
the following way:

coExp ::= co | im | preIm,

where the image im and preimage preIm are defined below.
Concept Expression evaluation. The function val ∈ st → (coExp →
2se) is called a concept expression evaluation. This function defines the
semantics of concept expressions. The sequence val(St)(CoExp) is called
the value of the concept expression CoExp in the state St.
Concepts. The value val(St)(Co) of the concept Co in the state St is
defined as the content of the concept Co:

val(St)(Co) = cont(Co, St).

Images. The set im of images is defined as follows:

im ::= re < te.

The value of an image Re < Te in a state St is the image of the content of
the relation Re for the set {val(St)(Te)}:

8 I. S. Anureev

val(St)(Re < Te) = {Se | (val(St)(Te), Se) ∈ cont(Re)}.
Preimages. The set preIm of preimages is defined as follows:

preIm ::= re > te.

The value of a preimage Re > Te in a state St is the preimage of the content
of the relation Re for the set {val(St)(Te)}:

val(St)(Re > Te) = {Se | (Se, val(St)(Te)) ∈ cont(Re)}.

7. Formulas

This section defines formulas and the related entities.
Formulas. The set fo of formulas is built in the following way:

fo ::= aFo | pFo | qFo | dFo | bFo.

The sets aFo, pFo, qFo, dFo, and bFo of atomic formulas, propositional
formulas, quantified formulas, dynamic formulas, and bracketed formulas,
respectively, are defined below.
Formula evaluation. The function val ∈ st → (fo → se) is called a
formula evaluation. This function defines the semantics of formulas. The
sequence val(St)(Fo) is called the value of the formula Fo in the state St.
A formula Fo is true in a state St, if val(St)(Fo) 6= (). Otherwise, the
formula Fo is false in the state St.
Atomic Formulas. The set aFo of atomic formulas is built in the following
way:

aFo ::= te | mem | eq | wEq.

The membership mem, equality eq and weak equality wEq are defined be-
low.
Memberships. The set mem of memberships is built in the following way:

mem ::= te : coExp.

A membership Te : CoExp is true in a state St, if the value of the term Te
belongs to the value of the concept expression CoExp:

val(St)(Te : CoExp) =
{

true, if val(St)(Te) ∈ val(St)(CoExp);
(), otherwise.

Equalities. The set eq of equalities is built in the following way:

eq ::= te = te.

An equality Te = Te′ is true in a state St, if the values of terms Te and Te′

in the state St are equal:

Ontological transition systems 9

val(St)(Te = Te′) =
{

true, if val(St)(Te) = val(St)(Te′);
(), otherwise.

Weak Equalities. The set wEq of weak equalities is built in the following
way:

eq ::= te ∼ te.

An equality Te ∼ Te′ is true in a state St, if the values of terms Te and Te′

in the state St are weakly equal:

val(St)(Te ∼ Te′) =
{

true, if val(St)(Te) ∼ val(St)(Te′);
(), otherwise.

Propositional Formulas. The set pFo of propositional formulas is built
with the help of logical connectives: negation (not), conjunction (and), dis-
junction (or), implication (implies), and equivalence (iff)

pFo ::= not fo | fo and fo | fo or fo | fo implies fo | fo iff fo.

with their usual semantics:

val(St)(not Fo) =
{

true, if val(St)(Fo) = ();
(), otherwise,

val(St)(Fo and Fo′) =
{

true, if val(St)(Fo) 6= () ∧ val(St)(Fo′) 6= ();
(), otherwise,

val(St)(Fo or Fo′) =
{

true, if val(St)(Fo) 6= () ∨ val(St)(Fo′) 6= ();
(), otherwise,

val(St)(Fo implies Fo′) =
{

true, if val(St)(Fo) = () ∨ val(St)(Fo′) 6= ();
(), otherwise,

val(St)(Fo iff Fo′) =

true, if
val(St)(Fo) = () ∧ val(St)(Fo′) = ()∨
val(St)(Fo) 6= () ∧ val(St)(Fo′) 6= ();

(), otherwise.

Quantified Formulas The set qFo of quantified formulas is built with the
help of existential (?) and universal (!) quantifiers

qFo ::= (? (bin) fo) | (? (bin) fo)

bin ::= ob : coExp | bin bin

with their usual semantics:

val(St)((?(Ob1 : CoExp1 ... Obn : CoExpn)Fo)) =

true, if
∃(A1 ∈ val(St)(CoExp1), ..., An ∈ val(St)(CoExpn))

(val(St)(Fo(Ob1 ← A1, ..., Obn ← An)) 6= ());
(), otherwise,

10 I. S. Anureev

val(St)((!(Ob1 : CoExp1 ... Obn : CoExpn)Fo)) =

true, if
∀(A1 ∈ val(St)(CoExp1), ..., An ∈ val(St)(CoExpn))

(val(St)(Fo(Ob1 ← A1, ..., Obn ← An)) 6= ());
(), otherwise.

The elements of the set bin are called bindings.
Dynamic Formulas. Dynamic formulas are built with the help of dynamic
logic modalities

dFo ::= (? { act } fo) | (! { act } fo)

with the usual semantics:

val(St)((?{Act}Fo)) ={
true, if ∃St′(tr(St, St′)(Act) ∧ val(St′)(Fo) 6= ());
(), otherwise,

val(St)((!{Act}Fo)) ={
true, if ∀St′(tr(St, St′)(Act) ⇒ val(St′)(Fo) 6= ());
(), otherwise.

Bracketed Formulas. The set bFo of bracketed formulas is built in the
following way:

bFo ::= (fo).

Brackets are used to define the order of computation of subformulas in for-
mulas:

val(St)((Fo)) = val(St)(Fo).

Operations. The order of computation is specified by priority and associa-
tivity of operations. Operations are listed below in the descending order:

= ∼ not and or implies iff.

Example. The formula A or B and C = D is equivalent to the formula

A or (B and (C = D)).

In addition, the operations and and or are left associative.
Example. The formula A and B and C is equivalent to the formula

(A and B) and C.

Ontological transition systems 11

8. Additional formula constructs

This section presents additional constructs which can be used in formulas.
On the one hand, these constructs are reducible to the basic formula con-
structs. On the other hand, they enlarge the conceptual capacity of the
OTSL language. These constructs include anonymous objects and anony-
mous sequences. They are used in place of terms. To introduce them, the
set te of terms is redefined.
Redefining Terms. The set te of terms is built in the following way:

te ::= eSe | ob | obC | teCom | anOb | anSe.

The sets anOb and anSe of anonymous objects and anonymous sequences,
respectively, are defined below.
Anonymous Objects. The set anOb of anonymous objects is built in the
following way:

anOb ::= (= te) | (te) | (∼ te).

An anonymous object (= Te) represents any object Ob with the content
equal to the value of the term Te in the state St, i.e. St(Ob) = val(St)(Te).
An anonymous object (Te) is a synonym for (= Te).

An anonymous object (∼ Te) represents any object Ob with the content
weakly equal to the value of the term Te in the state St, i.e.

St(Ob) ∼ val(St)(Te).

An anonymous object (∗ Te) is implicitly bound by the existential quan-
tifier ?, i.e. any formula Fo such that Foq = (∗ Te) is equivalent to the
formula

(?(Ob : o)(Fo[Ob]q and ?Ob ∗ Te)),

where ∗ ∈ {=,∼}. This requirement guarantees existence of at least one
object which satisfies the formula Fo and has the content defined by the
term Te.
Anonymous Sequences. The set anSe of anonymous sequences is built
in the following way:

anSe ::= ∗ : coExp.

An anonymous sequence ∗ :CoExp represents any sequence Se such that

Se ∈ val(St)(CoExp).

An anonymous sequence Se is implicitly bound by the existential quan-
tifier ?, i.e. any formula Fo such that Foq = ∗ :CoExp is equivalent to the
formula (?(Ob :CoExp)Fo[Ob]q). This requirement guarantees existence of
at least one sequence Se ∈ val(St)(CoExp) which satisfies the formula Fo.

12 I. S. Anureev

Elimination of anonymous objects and sequences. Anonymous ob-
jects and anonymous sequences can be reducible to other constructs. Their
semantics is defined by the reduction function red ∈ aFo → qFo. This
function normalizes atomic formulas, eliminating anonymous objects and
anonymous sequences:

red(Fo) =

(?(Ob :o) red(?Ob = Te) ∧ red(Fo[Ob]q)), if Foq = (= Te);
(?(Ob :o) red(?Ob = Te) ∧ red(Fo[Ob]q)), if Foq = (Te);
(?(Ob :o) red(?Ob ∼ Te) ∧ red(Fo[Ob]q)), if Foq = (∼ Te);
(?(Ob :CoExp) red(Fo[Ob]q)), if Foq = ∗ :CoExp;
Fo, otherwise.

Example. Let an OTS specify a referral database. The formula

(∗ : s surname Ivanov ∗ : s)

is equivalent to the formula

(?(X : o Y : s Z : s) ?X = Y surname Ivanov Z).

It means that there exists at least one object with the surname Ivanov in
the state of the referral database.
Example. Let an OTS specify a database of vacancies. The formula

∗ : employer

is equivalent to the formula

(?(X : o) X : employer).

It means that there exists at least one employer in the state of the database
of vacancies.

9. Concept Declarations

This section presents concept declarations which are used to define concepts
of OTSs, as well as the content of concepts.
Concept Declarations. The set coDec of concept declarations is built in
the following way:

coDec ::= #c ob { fo }.
Let CoDec be a concept declaration of the form #c Ob {Fo}. The object Ob
is called a concept declared in the concept declaration CoDec. The formula
Fo is called a content declarator of the concept Ob.
Concepts in OTS declarations. The set co(OtsDec) is called a set of
concepts declared in the OTS declaration OtsDec, if

Ontological transition systems 13

co(OtsDec) =
{Co ∈ ob | ∃[CoDec ∈ OtsDec, Fo](CoDec = #c Co {Fo})}.

Thus, co(OtsDec) is the set of concepts declared in concept declarations
which are members of OtsDec.
The Content of Concepts in OTS declarations. The function

cont ∈ co(OtsDec)× St → 2ob

is called a concept content retrieval declared by the OTS declaration OtsDec,
if

cont(Co, St) =

Ob |

∃[CoDec ∈ OtsDec, Fo]
(CoDec = #c Co {Fo}∧
val(St)(Fo(#i ← Ob)) 6= ())

 .

The special object #i is used in the content declarator Fo of the concept
Co to refer to the sequences from the content of the concept Co which is
declared in the concept declaration CoDec.
Example. The declaration

#c emptyConcept {()}

defines the concept emptyConcept. Its content is the empty set in any state.
Example. The declaration

#c object {# : o}

defines the concept object. The content of the concept object is the set of
all objects in any state.
Example. The declaration

#c document {#i :o and ?documents ∼ #i ∗ :s}

defines the concept document. Instances of the concept document are de-
fined as objects from the content of the object documents. For example, if
the state St is defined by Table 1, then cont(document, St) = {A,B}.

Table 1

Object Content
documents A B
A B
B A

14 I. S. Anureev

Example. The declaration

#c document {#i :o and ?#i ∼ document∗ :s}
defines the concept document. Instances of the concept document are de-
fined as objects such that their content includes the object document. For
example, if the state St is defined by Table 2, then cont(document, St) =
{A,B}.

Table 2

Instance Content
A document B
B C document A
C B

Example. The declaration

#c document {#i :o and ?#i = document ∗ :s}
defines the concept document. Instances of the concept document are de-
fined as objects such that their content includes the object document as
the first element. For example, if the state St is defined by Table 2, then
cont(document, St) = {A}.
Example. The declaration

#c makeReport {#i = makeReport}
defines the concept makeReport. The content of the concept makeReport
consists of one object makeReport for any state. Concepts of this form are
used to represent procedures. Arguments of these procedures are specified
by the content of the concepts for each state.

10. Relation declarations

This section presents relation declarations which are used to define relations
of OTSs, as well as the content of relations.
Relation Declarations. The set reDec of concept declarations is built in
the following way:

reDec ::= #r ob { fo }.
Let ReDec be a relation declaration of the form #r Ob {Fo}. The object Ob
is called a relation declared in the relation declaration ReDec. The formula
Fo is called a content declarator of the relation Ob.
Relations in OTS declarations. The set re(OtsDec) is called a set of
relations declared in the OTS declaration OtsDec, if

Ontological transition systems 15

re(OtsDec) =
{Re ∈ ob | ∃[ReDec ∈ OtsDec, Fo](ReDec = #c Re {Fo})}.

Thus, re(OtsDec) is the set of relations declared in the relation declarations
which are members of OtsDec.
The Content of Relations in OTS declarations. The function

cont ∈ re(OtsDec)× St → 2ob

is called a relation content retrieval declared by the OTS declaration OtsDec,
if

cont(Re, St) =

(Ob, Ob′) |

∃[ReDec ∈ OtsDec, Fo]
(ReDec = #c Re {Fo}∧
val(St)(Fo(#i ← Ob,#o ← Ob′)) 6= ())

 .

The special objects #i and #o are used in the content declarator Fo of the
relation Re to refer to the first and the second components of pairs from
the content of the relation Ro which is declared in the relation declaration
ReDec.
Example. The declaration

#r synonym {#i :word and #o :word and synonymGroup ∼ #i #o ∗ :s}

defines the relation synonym on words. According to this declaration, two
words are synonyms, if they are both included in the content of the concept
synonymGroup.
Example. The declaration

#r title {#i :document and #o : text and ?#i = source ∗ :o title #o ∗ : s}

defines the relation title. According to this declaration, the text #o is the
title of the document #i in the state St, if source B title #o is a prefix of
the content of #i for some object B.

This form of representation of the relation content is used for concepts
with a fixed order of attributes. In this example, source is the first attribute
with the value B, title is the second attribute with the value #i, the rest of
attributes represented by C follows title.
Example. The declaration

#r title {#i :document and #o : text and ?#i ∼ (= title #o) ∗ : s}

defines the relation title. According to this declaration, the text #o is the
title of the document #i in the state St, if there is an object B such that
B ∈ St(#i) and St(B) = title #o.

16 I. S. Anureev

Example. The declaration

#r expression {#i :expressionStatement and #o :expression and ?#i = #o ; }

defines the relation expression. According to this declaration, the expres-
sion #o is an expression of the expression statement #i in the state St, if
the content of #i in the state St has the form #o ;.

11. Conclusion

A new general-purpose method of formal specifications of computer systems
is presented. Based on a new notion of ontological transition systems, it
includes:

• definitions of OTSs and related notions;

• a language of formulas which are used to specify ontological entities
in OTSs;

• a formal operational semantics of the language of formulas.

The advantages of the method are as follows:

• use of natural intuitive terminology in specifications;

• a language support of description of OTSs;

• integration of the ontological and operational approaches to computer
systems specification.

References

[1] Gordon D. Plotkin. A Structural Approach to Operational Semantics. —
Aarhus, Denmark, 1981. — (Tech. Rep. / Computer Science Department,
Aarhus University; DAIMI FN-19).

[2] Gurevich Y. Abstract state machines: An Overview of the Project // Foun-
dations of Information and Knowledge Systems. — Lect. Notes Comput. Sci.
— 2004. — Vol. 2942. — P. 6–13.

[3] Gurevich Y. Evolving Algebras. Lipari Guide // Specification and Validation
Methods. — Oxford University Press, 1995. — P. 9–36.

[4] Stärk R., Börger E. Java and the Java Virtual Machine: Definition, Verifica-
tion, Validation. — Springer-Verlag, 2001.

[5] Börger E., Fruja N., Gervasi V., Stärk R. A High-Level Modular Definition
of C# // Theor. Comput. Sci. — 2005. — Vol. 336, N 2-3. — P. 235–284.

[6] ITU-T Recommendation Z.100 Annex F: SDL Formal Semantics Definition.
— Geneva: International Telecommunications Union (ITU), 2000.

Ontological transition systems 17

[7] Gurevich Y., Huggins J. The Semantics of the C Programming Language //
Lect. Notes Comput. Sci. — 1993. — Vol. 702. — P. 274–309.

[8] Börger E., Rosenzweig D. A Mathematical Definition of Full Prolog // Science
of Computer Programming. — 1994. — Vol. 24. — P. 249–286.

[9] Kutter P., Pierantonio A. The Formal Specification of Oberon // J. of Uni-
versal Computer Science. — 1997. — N 3 (5). — P. 443–503.

[10] Huggins J. Abstract State Machines Web Page. —
http://www.eecs.umich.edu/gasm.

[11] AsmL: The Abstract State Machine Language. Reference Manual. 2002. —
http://research.microsoft.com/fse/asml/doc/AsmL2 Reference.doc.

[12] XasM — An Extensible, Component-Based Abstract State Machines Lan-
guage. — http://xasm.sourceforge.net/XasmAnl00/XasmAnl00.html.

[13] Anureev I.S. A Language of Actions in Ontological Transition Systems //
Bull. Novosibirsk Comp. Center. Ser. Computer Science. — 2007. — IIS Spe-
cial Iss. 26. — P. 19–37.

18

