
Bull. Nov. Comp.Center, Comp. Science, 34 (2012), 1�21
c⃝ 2012 NCC Publisher

Program speci�c transition systems∗

I. S. Anureev

Abstract. A new kind of labeled transition systems, program speci�c transition
systems, is proposed. These systems are used to formalize and unify some aspects
of program handling. Such aspects as the development of program operational
semantics and proof of safety properties of programs are considered, and the ap-
propriate classes of program speci�c transition systems are de�ned. Ontological
transition systems and operational ontological semantics are de�ned in terms of
program speci�c transition systems.

1. Introduction

A modern trend in the �eld of software veri�cation is transition from the de-
velopment of program veri�cation methods used for small programs in model
programming languages to their adaptation to veri�cation of large software
systems in industrial programming languages. In this case practically impor-
tant properties of programs are picked out and specialized methods and tech-
niques of analysis and veri�cation, focused on these properties, are de�ned.
Formalization and uni�cation of processes of speci�cation of these proper-
ties and development of methods and techniques for them is an important
open problem. Industrial veri�cation is also characterized by a combination
of di�erent veri�cation methods. As a result, new hybrid program veri�ca-
tion methods arise. Creation of methods and tools that accumulate, analyse
and formalize experience in integration of di�erent veri�cation methods is
another important open problem.

To solve these problems, we propose to use a new kind of labeled tran-
sition systems, program speci�c transition systems. These systems de�ne
the overall framework for description of specialized transition systems that
formalize and unify various aspects of program handling.

Three classes of specialized transition systems are considered in this pa-
per. Operational semantics speci�c transition systems are used for a rapid
development of formal speci�cations of programming languages and software
systems prototyping. Safety logic speci�c transition systems are used to for-
malize and unify the deductive program veri�cation methods. Ontological
transition systems are used to develop operational ontological semantics of
programming languages and software systems. They describe the opera-

∗Partially supported by RFBR under grant No.11-01-00028-ð and SB RAS interdisci-

plinary integration project No.3.



2 I. S. Anureev

tional semantics of programming languages and software systems based on
their ontology.

2. Preliminary concepts and notation

This section describes the notation of basic data structures (lists, sequences,
and functions) used in this paper both on the object level and the meta level.

Lists have the form (a1 ... an), where ai are separated by spaces. Let
(lists of x) denote the set of all lists of elements of the set x, (lists of

x of length n) denote the set of all lists of elements of the set x of length
n, (length of a) denote the length of the list a.

Finite sequences have the form a1 ... an, where ai are separated by
spaces. Let (sequences of x) denote the set of all �nite sequences of ele-
ments of x and (sequences of x of length n) denote the set of all �nite
sequences of elements of x of length n.

Let bool = {true, false} and nat be the set of nonnegative integers.
Let (union of An where (n ∈ x)) denote the union of the sets An for all
(n ∈ x).

Let (f x) denote the application of the function f to the sequence x of
arguments (call of the function f on the arguments x). Let undef denote the
fact that a function has no value at some argument and ((domain of f) =

{x | ((f x) ̸= undef)}) denote the domain of f. Let f and g be functions
such that (((domain of f) ∩ (domain of g)) = ∅). Then the union (f

∪ g) of f and g is a function h such that ((domain of h) = (domain of f)

∪ (domain of g)), ((h x) = (f x)) for (x ∈ (domain of f)) and ((h

x) = (g x)) for (x ∈ (domain of g)).
We also use an alternative attribute notation for (usually �nite) functions.

If f is a function, f is called an attribute structure, the elements of the
domain of f are called attributes, and the object (f a) (denoted by f.a) is
called the value of the attribute a of the structure f.

We de�ne the operations of access . and update upd on functions as
follows:

• (f.x = (f x));

• if (y ̸= x), then (((upd f x e) y) = (f y));

• (((upd f x e) x) = e).

The operations . and upd are extended to sequences and lists, if these
structures were considered as functions with positive integer segments as
their domains.

We say that a function f can di�er from a function g only on a set x and
denote this fact (f can differ from g only on x), if ((f a) = (g a))

for each (a /∈ x).



Program speci�c transition systems 3

A labeled transition system lts is a triple (states labels tr), where
states and labels are sets whose elements are called states and labels,
respectively, and a logical function (tr ∈ ((states × labels × states)

→bool)) is called a transition relation. The system lts can transit from a
state s to a state ss by a label lab, if (tr s lab ss).

3. Program speci�c transition systems

Program speci�c transition systems (P-STSs) are labeled transition systems
used to formalize various aspects of program handling (de�nition of program
semantics, speci�cation of program veri�cation strategies, etc.).

States in P-STSs are algebraic structures of a special kind.
Let atoms be a set of objects called atoms. An expression is either an

expression list or an atom. Let expressions denote the set of all expres-
sions. In the context of the subsequent exposition, we call the elements of
sets (sequences of expressions) and (lists of atoms) programs and
symbols, respectively, and denote these sets by programs and symbols.
The elements of the set (programs = (sequences of expressions)) are
called programs. Let elements be a set of symbols called elements such that
(expressions ⊆ elements).

A state s w.r.t. (atoms elements) is de�ned as a total function from the
set ((lists of atoms) → ((union of (elementsn → elements),

where (n ∈ nat)) ∪ {undef})). The set elements is called a carrier of
s, and its elements are elements of s.

The set {(f ∈ symbols) | ((s f) ̸= undef)} is called a signature of
s and denoted by (symbols of s), and the elements of this set are called
symbols of s. The function (s f) is called an interpretation of the symbol
f in the state s. In contrast to the standard de�nition of an algebraic sys-
tem in which signature symbols are atoms, the symbols of a state are atom
lists. This brings the description of function calls closer to the description
in a natural language. The use of special atoms _ and __ in these symbols
makes them function call templates. These atoms called argument speci�ers
designate places for function arguments. The atom _ indicates that the corre-
sponding argument should be �rst evaluated, and the atom __ indicates that
this argument does not need to be evaluated. Let (f ∈ (symbols of s)).
The number of occurences of argument speci�ers in f is called the arity of f
and denoted by (arity of f). The following property for s should hold: if
(n = (arity of f)), then ((s f) ∈ (elementsn → elements)).

For example, for the equality operation =, the corresponding symbol f has
the form (_ = _) and ((s f) ∈ ((elements × elements) → bool)). In
this case, (bool ⊆ elements).

Let (u, w ∈ (sequences of expressions)). Let typed-args be a list
of structures with the attributes arg and type with values from expressions



4 I. S. Anureev

and {value, itself}, called typed arguments. The expression e is an in-
stance of f w.r.t. typed-args if and only if (The �rst proper rule is applied.)

• if (e = ()) and (f = ()), then (typed-args = ());

• if (e = (typed-args.1.arg u)) and (f = (_ w)), then
(typed-args.1.type = value) and (u) is an instance of (w) w.r.t.
(typed-args.2 ... typed-args.n);

• if (e = (typed-args.1.arg u)) and (f = (__ w)), then
(typed-args.1.type = itself) and (u) is an instance of (w) w.r.t.
(typed-args.2 ... typed-args.n);

• if (e = (b u)) and (f = (b w)), then (u) is an instance of (w) w.r.t.
typed-args;

• false.

The expression e is called an instance of f, if e is an instance of f w.r.t. some
typed-args. The same expression can be an instance of several symbols.
We consider that there is a function (match ∈ ((expressions × states)

→ ((symbols × expressions) ∪ {undef}))) which determines a symbol
choice:

• if ((match e s) = (f typed-args)), then (f ∈ (symbols of s))

and e is an instance of f w.r.t. typed-args;

• if ((match e s) = undef), then there are no (f ∈ (symbols of s))

and typed-args such that e is an instance of f w.r.t. typed-args.

The value (value of e in s) of the expression e in the state s is de�ned
as follows (The �rst proper rule is applied.):

• if (e ∈ atoms), then ((value of e in s) = e);

• if e = ((ee)) and (ee ∈ (sequences of expressions)), then
((value of e in s) = ((value of (ee) in s)));

• if (e ∈ (symbols of s)), then ((value of e in s) = (s e));

• if ((match e) = (f typed-args)), then ((value of e in s) =

((s f) arg-values));

• ((value of e in s) = undef).

The list (arg-values ∈ (lists of elements of length n)), where (n =

(arity of f)), in the above de�nition is given as follows:

• if (typed-args.i.type = value), then (arg-values.i = (value

of typed-args.i.arg in s));



Program speci�c transition systems 5

• if (typed-args.i.type = itself), then (arg-values.i =

typed-args.i.arg).

A function (σ ∈ (atoms → (sequences of expressions))) is called
a substitution. If (domain of σ) = {x1, ..., xn}, σ can be written as
((x1 (σ x1)) ... (xn (σ xn))). A substitution function subst w.r.t. σ
is de�ned as follows (The �rst proper rule is applied.):

• if (e ∈ (domain of σ)), then ((subst e σ) = (σ e));

• if (e ∈ atoms), then ((subst e σ) = e);

• ((subst (e1 ... en) σ) =

((subst e1 σ) ... (subst en σ))).

We now describe the main components of a P-STS (p-sts = (states

labels tr)).

The state predefined-interpretation de�nes the interpretation of pre-
de�ned symbols. The interpretation of these symbols does not change when
p-sts transits from one state to another. Let predefined-symbols denote
the set (symbols of predefined-interpretation).

The set modifiable-symbols includes modi�able symbols. Their inter-
pretation may change when p-sts transits from one state to another.

The sets predefined-symbols and modifiable-symbols can intersect.
A state s of p-sts expands to predefined-symbols so that (((s f) a) =

((predefined-interpretation f) a)) for all (a /∈ (domain of (s f))).

The set modifiable-symbols includes special symbols (value _),
(history length), and (_ is new-element).

The symbols (value _) are used to specify the intermediate values that
appear when p-sts transits from one state to another. For each state s, the
intermediate values are the values of expressions (value 1), ..., (value k)

in s, where (k = (value of (history length) in s)).

Let ((new elements of s) = {(a ∈ elements) | (((s (_ is new-

element)) a) = true)}). This set speci�es the elements of elements that
have not been ¾used¿ in s and previous states of p-sts. The elements of
this set are called new elements in s. For each (s ∈ states), the symbol
(_ is new-element) has the following properties:

• (((s (is new-element)) a) ∈ bool) for each (a ∈ elements).
This property means the totality of the symbol (_ is new-element);

• if (tr s lab ss), then ((new elements of ss) ⊆ (new elements

of s)). This property means monotone nonincreasing of the set (new
elements of s) w.r.t. tr;



6 I. S. Anureev

• if (tr s lab ss), then ((new elements of s) \ (new elements

of ss)) is �nite. This property means that any transition ¾uses¿
only a �nite number of new elements;

• (new elements of s) is in�nite. This property means that there is a
su�cient number of new elements to ¾be used¿ in any transition;

• ((value of e in s) ∈ (new elements of s) for each (e ∈
expressions), and (((new elements of s) ∩ expressions) = ∅).
These properties formalize the notion ¾not to be used¿.

A labeled transition system p-sts = (states labels tr) is called a P-
STS w.r.t. (atoms elements predefined-interpretation modifiable-

symbols), if lab = (p | pp) for some (p, pp ∈ programs), and for all (s
∈ states) the following conditions hold:

• s is a state w.r.t. (atoms elements);

• ((symbols of s) = (predefined-symbols ∪ modifiable-

symbols)). This property means that the signature of any state con-
tains exactly the symbols of predefined-symbols and modifiable-

symbols;

• ((s (history length)) ∈ nat);

• if (tr s lab ss), then ((s (history length)) ≤ (ss (history

length))) for each (ss ∈ states). This property means that the
set of intermediate values can only be replenished;

• ((value of (value i) in s) = undef) for each (i ≥ (s (history

length))). This property means that the set of intermediate values is
limited by the constant (history length).

If (tr s (p | pp) ss), we say that p transforms s to ss w.r.t. pp.
Thus, programs can be considered as state transformers.

A list (p s) is called a con�guration. A con�guration should meet the
following restriction: if p contains an expression of the form (value a), then
(a ∈ nat) and (a ≤ (s (history length))).

If (tr s (p | pp) ss), we say that p-sts can transit from (p s) to
(pp ss). The con�guration (p s) is called �nal, if there is no con�guration
(pp ss) such that (tr s (p | pp) ss). The state s is called �nal, if (p
s) is �nal for each program p. The con�guration is called a branchpoint, if
p-sts can transit from it to more than one con�guration.

A trace is a �nite or in�nite sequence of con�gurations (p1 s1) (p2 s2)

... such that p-sts can transit from (pi si) to (pi+1 si+1).
A special atom backtrack speci�es a dummy trace of program execu-

tion. A con�guration (p s) is called a backtracking con�guration, if (p.1 =



Program speci�c transition systems 7

(backtrack)). The transition relation tr should satisfy the following con-
dition: if (p s) is a backtracking con�guration, then (p s) is �nal. A �nite
trace with a backtracking con�guration as its last element is called dummy.
Backtracking means that if p-sts reaches a backtracking con�guration (p

s), it backtracks to the nearest branchpoint and starts to perform another
trace. If there are no such traces, p-sts backtracks to the previous branch-
point. If there are no such points, all traces are dummy (except for, possibly,
the trace from the initial con�guration).

A function (io-sem ∈ (programs → ((states × states) →
bool))) is called an input-output semantics w.r.t. p-sts, if ((io-sem p) s

ss) if and only if there is a �nite non-dummy trace (p1 s1) ... (pn sn)

such that ((p1 s1) = (p s)), (sn = ss) and (pn sn) is �nal.

The transition relation tr is a union of transition relations, each of which
is characterized by the kind of the expression p.1. In turn, these expressions
are divided into regular and irregular ones. The transition relation for a
regular expression p.1 is given by transition rules. These rules are also
called the rules of operational semantics of p.1. The transition relation for
each kind of irregular expressions is de�ned by a speci�c way.

A transition rule r has the form (if sam var x hvar w then c), where
(sam ∈ expressions), (x ∈ (sequences of expressions)), (w ∈
symbols), and (c ∈ programs).

In the case of ((length of x) = 0) or ((length of w) = 0), the cor-
responding components var x and hvar w can be omitted.

The expression sam is called a sample of r. The sample sam de�nes the
set of expressions p.1 to which r can be applied.

The elements of x are called sample variable speci�ers. If a speci�er u is
an atom, it speci�es a sample variable u of the type exp. If u has the form
(seq v), where (v ∈ atoms), it speci�es the sample variable v of the type
seq. The result of matching p.1 with sam is stored in the sample variables.
The variables of the type exp store expressions, and the variables of the
type seq store programs. Let u.var denote the variable speci�ed by u, and
u.type denote the type of u.var.

The elements of w are called history variables. They are used to store
intermediate values in (value _). Transition with the help of r increases
the value of (history length) by (length of w).

The program c is called the body of r. The result cc of modi�cation
of c according to the values of sample and history variables replaces p.1 in
p, resulting in pp. The body c should not include instances of the symbols
(value _) and (history length).

The sets of modi�able symbols, kinds of irregular expressions, their se-
mantics, and semantics of transition rules may be di�erent for di�erent kinds
of P-SPS.



8 I. S. Anureev

4. Operational semantics speci�c transition systems

Operational semantics speci�c transition systems (OS-STSs) is a special kind
of P-STSs used for description of operational semantics of programs.

The set modifiable-symbols includes a special symbol (value) which
is used to specify the value that an OS-STS can return when it transits from
one state to another. We say that p returns the value v w.r.t. pp, if (tr s

(p | pp) ss) for some ss and ((ss (value)) = v). We say that p returns
the value v, if p returns the value v w.r.t. some pp.

Irregular expressions in OS-STSs are of �ve kinds.
The irregular expression (stop) is called a stop and has the following

semantics: (tr s ((stop) p | pp) ss) if and only if (ss = s) and pp is
an empty sequence.

The irregular expression (assume a) is called a continuation condition
and has the following semantics: (tr s ((assume a) p | pp) ss) if and
only if (ss = s) and (The �rst proper rule is applied.)

• if ((value of a in s) = true), then (pp = p);

• (pp = (backtrack) p).

The irregular expression (modify a) is called an update condition and
has the following semantics: (tr s ((modify a) p | pp) ss) if and only
if (The �rst proper rule is applied.)

• if ((value of a in s wrt ss) = true), then (pp = p) and (ss

can differ from s only on x), where x is a set of modi�able sym-
bols for which there is an example (e) such that (: e) occurs in
a;

• (ss = s) and (pp = (backtrack) p).

The value (value of e in s wrt ss) of the expression e in s w.r.t. ss
is de�ned as follows (The �rst proper rule is applied.):

• if (e ∈ atoms), then ((value of e in s wrt ss) = e);

• if e = ((ee)) and (ee ∈ (sequences of expressions)), then
((value of e in s wrt ss) = ((value of (ee) in s wrt ss)));

• if (e = (: ee)) and ((ee) ∈ (symbols of s)), then ((value of

e in s wrt ss) = (ss (ee)));

• if (e = (: ee)) and ((match (ee) ss) = (f typed-args)), then
((value of e in s wrt ss) = ((ss f) arg-values));

• if (e.1 ̸= :) and (e ∈ (symbols of s)), then ((value of e in s

wrt ss) = (s e));



Program speci�c transition systems 9

• if (e.1 ̸= :) and ((match e s) = (f typed-args)), then ((value

of e in s wrt ss) = ((s f) arg-values));

• ((value of e in s wrt ss) = undef).

The list arg-values in the above de�nition is given as in the de�nition of
(value of e in s). A special atom : in the expression (: ee) means
that the symbol for which (ee) is an instance is interpreted in ss.

The irregular expression (modify a else b) is called an update condi-
tion with alternative and has the following semantics: (tr s ((modify a

else b) p | pp) ss) if and only if (The �rst proper rule is applied.)

• if ((value of a in s wrt ss) = true), then (pp = p) and (ss

can differ from s only on x), where x is a set of modi�able sym-
bols for which there is an example (e) such that (: e) occurs in
a;

• (ss = s) and (pp = b p).

The irregular expression (a ::= b) is called a symbol update and has
the following semantics: (tr s ((a ::= b) p | pp) ss) if and only if (The
�rst proper rule is applied.)

• if ((match a s) = (f typed-args)) and (f ∈ modifiable-

symbols), then ss = s and (pp = (modify ((: f) = (updv f

args b))) p)

• (ss = s) and (pp = (fail) p).

The prede�ned symbol (updv _ _ _) has the following interpretation:
((value of (updv g (x1 ... xn) y) in s) = (upd (value of g in

s) ((value of x1 in s) ... (value of xn in s)) (value of y in

s))).
The list args ∈ (lists of expressions of length (arity of f))

is de�ned as follows:

• if (typed-args.i.type = itself), then (args.i = (quote

typed-args.i.arg));

• if (typed-args.i.type = value), then (args.i = typed-args.i.

arg).

The prede�ned symbol (quote __) has the following interperetation:
((value of (quote a) in s) = a).

We now de�ne the semantics of the transition rule r in p-sts.
Let σ be a substitution on the sample variables of r such that ((σ

x.i.var) ∈ expressions) for (x.i.type = exp) and ((σ x.i.var) ∈



10 I. S. Anureev

(sequences of expressions)) for (x.i.type = seq), δ is a substitution
on the history variables of r such that (δ w.j) = (value ((value of

(history length) in s) + j)) and (γ = (σ ∪ δ)).
Let (cc ∈ programs) be de�ned as follows: ((length of cc) =

(length of c)) and (cc.k = (del* (subst c.k γ) s)) for all (1 ≤ k

≤ (length of c)).
The function del* evaluates expressions marked by a special atom * in

the body c of r, and is de�ned as follows (The �rst proper rule is applied.):

• ((del* (* a) s) = (value of (del* a) in s));

• ((del* (a1 ... an) s) = ((del* a1 s) ... (del* an s)));

• ((del* a s) = a).

Let ((length of w) = m) and ((length of p) = n). The transition
relation tr for a regular expression p.1 is de�ned by transition rules as
follows: (tr s (p | pp) ss) if and only if there is a substitution σ such
that

• ((subst a σ) = p.1);

• (ss can differ from s only on {(history length)}) and ((ss

(history length)) = ((ss (history length)) + m));

• (pp = cc p.2 ... p.n).

As an example of application of rules of OS-STSs, we de�ne operational
semantics of expressions often used in OS-STSs.

The expression (new element) called a new symbol generator is de�ned
by the rule

(if (new element) then (modify (((: value) is new-element) and

((: _ is new-element) =

(updv (_ is new-element) ((: value)) false)))))

A special atom fail denotes the incorrect termination of the program
and is called an unsafe termination. A con�guration (p s) is called unsafe,
if (p.1 = (fail)). Otherwise, (p s) is called safe. The transition relation
tr should satisfy the following condition: if (p s) is unsafe, then (p s) is
�nal. A �nite trace with an unsafe con�guration as its last element is called
unsafe.

The expression (assert a) called a safety condition is de�ned by the
rules

(if (assert a) var a then (assume a))

(if (assert a) var a then (assume (not a)) (fail) (stop))



Program speci�c transition systems 11

The expression (restart) called a restart is de�ned by the rule

(if (restart) then (modify (((: value) = undef) and

(forall x ((: value x) = undef)) and ((: history length) = 0))))

5. Safety logic speci�c transition systems

Let os-sts be an OS-STS. Let us de�ne the notion of program safety in
os-sts.

A program p is called safe in os-sts w.r.t. a state s, if there is no �nite
trace (p1 s1) ... (pn sn) such that ((p1 s1) = (p s)) and (pn sn) is
unsafe.

A program p is called safe in os-sts w.r.t. a precondition (pre ∈
expressions), if p is safe in os-sts w.r.t. s for each s such that ((value
of pre in s) = true).

Safety logic speci�c transition systems (SL-STSs) are P-STSs of a special
kind, and they are used to check safety properties of programs. Let sl-sts be
an SL-STS. Transition rules of sl-sts reduce checking of safety of a program
p in os-sts w.r.t. pre to proving a set of expressions called veri�cation
conditions. If all these veri�cation conditions are true, then p is safe in
os-sts w.r.t. pre.

A P-STS sl-sts is called a safety logic speci�c transition system w.r.t.
os-sts, if it satis�es the following properties.

The set modifiable-symbols of sl-sts includes special symbols
(precondition) and (version of _). The symbol (precondition) stores
a precondition. The set (domain of (s (version of _))) is the same for
any state s of sl-sts and coincides with the set modifiable-symbols of
os-sts. This set is denoted by (domain of version). The element ((value
of (version of f) in s) ∈ nat) is the number of the previous states of
os-sts in which the interpretation of f could be changed. This element is
called a version of f in s.

Since (value) and (_ is new-element) belong to modifiable-symbols
of os-sts, sl-sts uses (value*) and (_ is new-element*) instead of it.

Irregular expressions in SL-STSs are of seven kinds.
The irregular expression (stop) is de�ned as the same for OS-STSs.
The irregular expression (modify a) is called an update condition and

has the following semantics: (tr s ((modify a) p | pp) ss) if and only
if (pp = p) and (The �rst proper rule is applied.)

• (ss can differ from s only on {(precondition), (version of

_)}),

• ((ss (precondition)) = ((s (precondition)) and (add

version to a wrt s))),



12 I. S. Anureev

• if (f ∈ x), where x is a set of modi�able symbols for which there is
an instance (e) such that (: e) occurs in a, then ((ss (version of

f)) = ((s (version of f)) + 1)),

• if (f ∈ (modifiable symbols) \ x), then ((ss (version of f))

= (s (version of f))).

A special atom : in (: e) means that the symbol for which (e) is an
instance increases its version by one when sl-sts transits from s to ss.

Let the symbol (concatenate _ and _) be interpreted as a concate-
nation of atoms in the case when both arguments are atoms. Let (f ∈
(domain of version)). The expression (add version to a wrt s) adds
versions for all symbols of (domain of version) in a, and has the following
semantics (The �rst proper rule is applied.):

• if (a ∈ atoms), then ((add version to a wrt s) = a);

• if a = (: b)) and (b) is an instance of f, then ((add version to a

wrt s) = ((concatenate : and ((value of (version of f) in

s) + 1)) (add version to b wrt s)));

• if a = (b) and a is an instance of f, then ((add version to a wrt

s) = ((concatenate : and (value of (version of f) in s))

(add version to b wrt s)));

• if a = (b), then ((add version to a wrt s) = ((add version to

b wrt s)));

• ((add version to a1 ... an s) = (add version to a1 wrt s)

... (add version to an wrt s)).

The irregular expression (assume a) is called a continuation condition
and has the following semantics: (tr s ((assume a) p | pp) ss) if and
only if (pp = p), (ss can differ from s only on {(precondition)})

ø ((ss (precondition)) = ((s (precondition)) and (add version to

a wrt s))).
The irregular expression (a ::= b) is called a symbol update and has

the following semantics: (tr s ((a ::= b) p | pp) ss) if and only if (The
�rst proper rule is applied.)

• if ((match a s) = (f typed-args)) and (f ∈ modifiable-

symbols), then ss = s and (pp = (modify ((: f) = (updv f

args b))) p)

• (ss = s) and (pp = (fail) p).

Semantics of the irregular expressions (assume* a), (modify* a), and
(a ::=* b) called an operational continuation condition, an operational up-
date condition, and operational symbol update, respectively, coincides with



Program speci�c transition systems 13

semantics of expressions (assume a), (modify a), and (a ::= b) in OS-
STSs.

Semantics of transition rules of SL-STSs coincides with the semantics of
transition rules of OS-STSs.

As an example of application of the rules of SL-STSs, we de�ne the
operational semantics of expressions often used in SL-STSs.

The expression (fail) called an unsafe termination is de�ned by the rule

(if (fail)

then ((value*) ::=* (quote (not (* precondition)))) (stop))

The expression (new element) called a new element generator is de�ned
by the rule

(if (new element) then (modify (((: value) is new-element) and

((: _ is new-element) =

(updv (_ is new-element) ((: value)) false)))))

The expression (new element*) called an operational new element gen-
erator is de�ned by the rule

(if (new element*) then (modify* (((: value) is new-element*) and

((: _ is new-element*) =

(updv (_ is new-element*) ((: value)) false)))))

The expression (assert a) called a safety condition is de�ned by the
rule

(if (assert a) var a then (assume a))

(if (assert a) var a then (assume (not a)) (fail) (stop))

The expression (assert* a) called an operational safety condition is
de�ned by the rule

(if (assert* a) var a then (assume* a))

(if (assert* a) var a then (assume* (not a)) (fail) (stop))

The expression (restart with precondition a) called a restart is de-
�ned by the rule

(if (restart with precondition a) var a

then (modify* (((: value*) = undef) and

(forall x ((: value x) = undef)) and ((: history length) = 0) and

(forall x ((: version of x) = 0)) and

((: precondition) = (add null version to a)))))



14 I. S. Anureev

The expression (add null version to a) puts in a the null version of
all symbols of (domain of version) and has the following de�nition (The
�rst proper rule is applied.):

• if (a ∈ atoms), then ((add null version to a) = a);

• if a = (b) and a is an instance of (f ∈ (domain of version)), then
((add null version to a) = (:0 (add null version to b)));

• if a = (b), then ((add null version to a) = ((add null

version to b)));

• ((add null version to a1 ... an s) = (add null version to

a1 wrt s) ... (add null version to an wrt s)).

A set of veri�cation conditions generated by sl-sts for the program p

w.r.t. pre is de�ned as the set of values of the symbol (value*) in all
states s such that ((io-sem (reset with precondition pre) p (stop))

undef-state s), where undef-state is a state such that ((undef-state

f) = undef) for all (f ∈ (symbols of undef-state)).

6. The de�nition of ontological transition systems in terms

of operational semantics speci�c transition systems

The operational ontological approach to formal speci�cation of a program-
ming language, based on ontology of this language, has been proposed in
[14]. A new kind of program semantics, operational ontological semantics,
was introduced in the framework of the approach. In contrast to usual op-
erational semantics, which does not impose any restrictions on states, in the
operational ontological semantics states are de�ned as ontological models
(sets of instances of concepts of the programming language ontology).

A formalism for description of operational ontological semantics, onto-
logical transition systems (OTSs) [2, 3, 12, 13], has also been proposed.

In this section we de�ne OTSs and operational ontological semantics
using OS-STSs. This allows us to combine the advantages of the ontological
approach with the expressiveness of the formalism of OS-STSs.

An OTS ots is an OS-STS such that the set modifiable-symbols in-
cludes two subsets ontological-symbols and instantiation-symbols.

The elements of ontological-symbols are called ontological symbols.
They specify the elements (concepts, attributes, relations and so on) of a
programming language ontology.

Let us consider an example of the set ontological-symbols. We use
the letters a, b, c instead of argument speci�ers to determine the informal
meaning of symbols of this set:

• (a is concept) means that a is a concept



Program speci�c transition systems 15

• (a is attribute of b) means that a is an attribute of the concept
b;

• (a is attribute of b of type c) means that a is an attribute of
the concept b of type c. The type c is a concept. For example, (a is

attribute of b of integer) means that a is an integer attribute of
the concept b.

The elements of instantiation-symbols are called instantiation sym-
bols. They specify relations of the ontology elements with their instances.

Let us consider an example of the set instantiation-symbols:

• (a is b) means that a is an instance of the concept b;

• (a of b) is the value of the attribute a of the instance b of a con-
cept. For example, if b is an assignment statement of the form (u :=

v), then the expression (left-side of b) is the left side u of this
statement;

• (a of b of c) is the value of the attribute a of the instance b of the
concept c. This symbol is used to resolve the con�ict when b is an
instance of several concepts that have the attribute a.

Now we can formally de�ne the operational ontological semantics of a
programming language. Let L be a programming language. The operational
ontological semantics of L is de�ned as a pair (p ots), where p ∈ programs

and ots is an OTS.
The program p is called a speci�cation of an ontology of L. The result

of execution of p is an ontology of L. The OTS ots de�nes semantics of
executable concepts of L. An executable concept is a concept that describes
a set of executable entities of L.

Let us note that the ontology of a modern programming language includes
not only a description of its constructions and their constituent elements,
but also the description of fundamental concepts such as exception propaga-
tion, overload resolution, communications of applications with operational
environments, �nding the dynamic type of an object in object-oriented pro-
gramming languages, and etc.

The OTS ots should preserve the ontology of L. An OTS preserves on-
tology, if transitions of this OTS do not change interpretations of ontological
symbols.

7. Example

We illustrate the application of P-STSs by an example of a toy programming
language L.

Let s be a current state. The language L includes the following kinds of
expressions:



16 I. S. Anureev

• (block p) sequentially executes expressions from (p ∈ programs);

• x returns the value of the variable (x ∈ atoms). This expression is
called a variable access. If there is no variable named x, (fail) is
generated. For simplicity, we assume that all variables are of integer
type. Integers are speci�ed by the prede�ned symbol (_ is integer);

• (x := e) assigns the value of the expression e to the variable x. If (x
:= e) is the �rst assignment to the atom x, this assignment serves as
the declaration of the variable x with the initializer e. For simplicity,
we assume that e is either a variable access or an integer;

• c returns c, if ((value of (c is integer) in s) = true).

• (if x then y else z) is a conditional statement with the condition
(x ∈ expressions), the then-branch (y ∈ programs) and the else-
branch (z ∈ programs);

• (while x do y) is a loop with the condition (x ∈ expressions) and
the body (y ∈ programs);

• (random) returns an integer.

First, we consider the application of OS-STSs to the development of the
operational semantics of L and describe the steps of the de�nition of the
OS-STS os-sts which speci�es operational semantics of L.

In the �rst step, the set modifiable-symbols of os-sts is de�ned. It
includes the symbols (_ is variable) and (value of _) in addition to the
basic symbols like (value). The symbol (_ is variable) de�nes the set
of variables of a program in L. The symbol (value of _) stores the values
of variables of this program.

In the second step, the transition rules of os-sts that specify the seman-
tics of L expressions are de�ned:

(if (block a) var (seq a) then a)

(if a var a

then (assert (a is variable)) ((value) ::= (value of a)))

(if a var a then (assume (a is integer)) ((value) ::= a))

(if (a := b) var a b

then b ((a is variable) ::= true) ((value of a) ::= (value)))

(if (if a then b else c) var a (seq b) (seq c)

then a (assume ((value) = true)) b)

(if (if a then b else c) var a (seq b) (seq c)

then a (assume ((value) = false)) c)



Program speci�c transition systems 17

(if (while a do b) var a (seq b)

then (assume a) b (while a do b))

(if (while a do b) var a (seq b) then (assume (not a)))

(if (random) then (modify ((: value) is integer)))

In the third step, the set predefined-symbols of os-sts is de�ned. It
consists of the prede�ned symbols used in transition rules of os-sts. A de-
scription of these symbols and their interpretations completes the de�nition
of a state of os-sts. In our case, predefined-symbols includes the sym-
bols (_ = _), (not _) and (_ is integer) with their usual interpretation
(equality, negation and ¾to be an integer¿).

Let us note that if a programming language has a syntax that is di�erent
from the expression syntax, a preliminary step is required. In this step, an
equivalence relation between the constructs of the language and expressions
is determined, and its constructs are translated into the equivalent expres-
sions. Since this translation can be considered as a denotational semantics
of some kind, the formal semantics of the programming language is de�ned
as a combined denotational-operational semantics.

We now consider the application of SL-STSs to the development of a
safety logic for L. SL-STSs are de�ned so that their rules for many pro-
gramming language constructs are syntactically identical to the rules of the
corresponding OS-STSs. In our case, the safety rules for L coincide with
the corresponding rules of the operational semantics of L except for the loop
rules.

The loop (while a do b) is replaced by the annotated loop (while a

invariant i do b) with the invariant i. The safety logic for this loop is as
follows:

(if (while a invariant i do b) var a i (seq b)

then (assert i) (stop))

(if (while a invariant i do b) var a i (seq b)

then (precondition ::=* i) (assume a) b (assert i) (stop))

(if (while a invariant i do b) var a i (seq b)

then (precondition ::=* i) (assume (not a)))

Finally, we consider the application of OTSs for the development of op-
erational ontological semantics.

We �rst consider the program p which is building the ontology of L:

((block is concept) ::= true)



18 I. S. Anureev

((sequence is attribute of block) ::= true)

((identifier is concept) ::= true)

((variable is concept) ::= true)

((value is attribute of variable)) ::= true)

((constant is concept) ::= true)

((assignment is concept) ::= true)

((left-side is attribute of assignment)) ::= true)

((right-side is attribute of assignment)) ::= true)

((if-statement is concept) ::= true)

((condition is attribute of if-statement)) ::= true)

((then is attribute of if-statement)) ::= true)

((else is attribute of if-statement)) ::= true)

((while-statement is concept) ::= true)

((condition is attribute of while-statement)) ::= true)

((body is attribute of while-statement)) ::= true)

((random is concept) ::= true)

We now de�ne the OTS which speci�es the operational ontological se-
mantics with the following set of rules:

(if a var a then (assume (a is block)) (* sequence of a))

(if a var a then (assume (a is identifier))

(assert (a is variable)) ((value) ::= (value of a)))

(if a var a then (assume (a is integer)) ((value) ::= a))

(if a var a then (assume (a is assignment))

(* right-side of a) ((a is integer) ::= true)

((value of (* left-side of a)) ::= (value)))

(if a var a then (assume (a is if-statement))

(* condition of a) (assume ((value) = true)) (* then of a))

(if a var a then (assume (a is if-statement))

(* condition of a) (assume ((value) = false)) (* else of a))

(if a var a then (assume (a is while-statement))

(assume (* condition of a)) (* body of a) a)



Program speci�c transition systems 19

(if a var a then (assume (a is while-statement))

(assume (not (* condition of a))))

(if a then (assume (a is random)) (modify ((: (value)) is integer)))

8. Conclusion

In this paper a new kind of labeled transition systems, program speci�c tran-
sition systems, is proposed and three classes of such systems � operational
semantics speci�c transition systems, safety logic speci�c transition systems
and ontological transition systems � are considered.

We plan to unify the previously developed various kinds of operational
[24, 27] and axiomatic [6, 18, 19, 20, 23, 25, 28] semantics on the basis of
operational semantics speci�c transition systems and safety logic speci�c
transition systems, respectively, and to integrate them into the multilingual
system of program analysis and veri�cation Spectrum [9, 21]. Program spe-
ci�c transition systems will be used in a new de�nition of the domain-speci�c
language Atoment [10, 16] on which the system Spectrum is based, and in
the knowledge portal on computer languages [1, 17] for formal speci�cation
of these languages.

We also plan to develop new specialized labeled transition systems to
specify the previously developed simpli�cation methods for veri�cation con-
ditions [4, 5, 8, 11, 15], context machines [7] and program translation algo-
rithms in the multi-level methods of veri�cation of C-light [6, 26] and C#
[22, 23] programs.

References

[1] Andreeva T.A., Anureev I.S., Bodin E.V., Gorodnyaya L.V., Marchuk A.G.,
Murzin F.A., Shilov N.V. Educational signi�cance of classi�cation of com-
puter languages // Prikladnaya informatika. � 2009. � No.6 (24). � P. 18�28
(In Russian).

[2] Anureev I.S. A language of actions in ontological transition systems // Bull.
Novosibirsk Comp. Center. Ser. Computer Science. � Novosibirsk, 2007. � IIS
Special Iss. 26. � P. 19�38.

[3] Anureev I.S. A Language of description of ontological transition systems
OTSL as a tool for formal speci�cation of program systems // Vestnik NGU.
Ser. Information Technologies. � 2008. � Vol. 6, No.3. � P. 24�34 (In Russian).

[4] Anureev I.S. A method for simpli�cation procedures design based on for-
mula rewriting systems // Joint NCC&IIS Bulletin. Ser. Computer Science.
� Novosibirsk, 1998. � Iss. 8. � P. 1�18.



20 I. S. Anureev

[5] Anureev I.S. A method of elimination of data structures based on formula
rewriting systems // Programming and Computer Software. � 1999. � Vol.
25, No.4. � P. 184�192.

[6] Anureev I.S. A three-stage method of C program veri�cation // Bull. Novosi-
birsk Comp. Center. Ser. Computer Science. � Novosibirsk, 2008. � IIS Special
Iss. 28. � P. 1�29.

[7] Anureev I.S. Context machines as formalism for speci�cation of dynamic sys-
tems // Bull. Novosibirsk Comp. Center. Ser. Computer Science. � Novosi-
birsk, 2009. � IIS Special Iss. 29. � P. 1�16.

[8] Anureev I.S. Formula rewriting systems and their application to automated
program veri�cation // Joint NCC&IIS Bulletin. Ser. Computer Science. �
Novosibirsk, 1999. � Iss. 10. � P. 1�5.

[9] Anureev I.S. Integrated approach to analysis and veri�cation of impera-
tive programs // Bull. Novosibirsk Comp. Center. Ser. Computer Science.
� Novosibirsk, 2011. � IIS Special Iss. 32. � P. 1�18.

[10] Anureev I.S. Introduction to the Atoment language // Bull. Novosibirsk
Comp. Center. Ser. Computer Science. � Novosibirsk, 2010. � IIS Special
Iss. 31. � P. 1�16.

[11] Anureev I.S. Multi-branch narrowing: satis�ability and termination // Joint
NCC&IIS Bulletin. Ser. Computer Science. � Novosibirsk, 2000. � Iss. 13. �
P. 1�11.

[12] Anureev I.S. Ontological models in OTSL // Problems in Programming. �
2008. � No.2-3. � P. 41�49.

[13] Anureev I.S. Ontological transition systems // Bull. Novosibirsk Comp. Cen-
ter. Ser. Computer Science. � Novosibirsk, 2007. � IIS Special Iss. 26. � P.
1�18.

[14] Anureev I.S. Operational ontological approach to formal programming lan-
guage speci�cation // Programming and Computer Software. � 2009. � Vol.
35, No.1. � P. 35�42.

[15] Anureev I.S. Program veri�cation based on speci�cation language Simple //
Joint NCC&IIS Bulletin. Ser. Computer Science. � Novosibirsk, 2001. � Iss.
15. � P. 1�16.

[16] Anureev I.S. Typical examples of using the Atoment language // Automatic
Control and Computer Sciences. � 2012. � Vol. 46, No.7. � P. 299�307.

[17] Anureev I.S., Bodin E.V., Gorodnyaya L.V., Marchuk A.G., Murzin F.A.,
Shilov N.V. On the problem of computer language classi�cation // Bull.
Novosibirsk Comp. Center. Ser. Computer Science. � Novosibirsk, 2008. �
IIS Special Iss. 28. � P. 31�42.



Program speci�c transition systems 21

[18] Anureev I.S., Bodin E.V., Shilov N.V. E�ective generation of veri�cation
conditions for non-deterministic unstructured programs // Bull. Novosibirsk
Comp. Center. Ser. Computer Science. � Novosibirsk, 2007. � IIS Special Iss.
26. � P. 39�64.

[19] Anureev I.S., Maryasov I.V., Nepomniaschy V.A. C-Programs Veri�cation
Based on Mixed Axiomatic Semantics // Automatic Control and Computer
Sciences. � 2011. � Vol. 45, No.7. � P. 485�500.

[20] Atuchin M.M., Anureev I.S. Attribute annotations and their use in C program
deductive veri�cation // Automatic Control and Computer Sciences. � 2012.
� Vol. 46, No.7. � P. 308�316.

[21] Nepomniaschy V.A., Anureev I.S., Atuchin M.M., Maryasov I.V., Petrov
A.A., Promsky A.V. C Program Veri�cation in SPECTRUM Multilanguage
System // Automatic Control and Computer Sciences. � 2011. � Vol. 45,
No.7. � P. 413�420.

[22] Nepomniashy V.A., Anureev I.S., Dubranovsky I.V., Promsky A.V. A three-
level approach to C# program veri�cation // Joint NCC&IIS Bulletin. Ser.
Computer Science. � Novosibirsk, 2004. � Iss. 20. � P. 61�85.

[23] Nepomniaschy V.A., Anureev I.S., Dubranovskii I.V., Promsky A.V. Towards
veri�cation of C# programs: a three-level approach // Programming and
Computer Software. � 2006. � Vol. 32, No.4. � P. 190�202.

[24] Nepomniaschy V.A., Anureev I.S., Mikhailov I.N., Promskii A.V. Towards
Veri�cation of C Programs. C-light language and its formal semantics //
Programming and Computer Software. � 2002. � Vol. 28, No.6. � P. 314�323.

[25] Nepomniaschy V.A., Anureev I.S., Promskii A.V. Towards veri�cation of C
programs: axiomatic semantics of the C-kernel language // Programming
and Computer Software. � 2003. � Vol. 29, No.6. � P. 338�350.

[26] Nepomniaschy V.A., Anureev I.S., Promsky A.V. Towards veri�cation of C
programs. Language ï¨�-light and its trasnformational semantics // Problems
in Programming. � 2006. � No.2�3. � P. 359�368 (In Russian).

[27] Nepomniaschy V.A., Anureev I.S., Promsky A.V. Veri�cation-oriented lan-
guage C-light and its structural operational semantics // PSI-2003. Proc. of
Conf. � Lect. Notes Comput. Sci. � 2003. � Vol. 2890. � P. 103�111.

[28] Shilov N.V., Anureev I.S., Bodin E.V. Generation of correctness conditions
for imperative programs // Programming and Computer Software. � 2008. �
Vol. 34, No.6. � P. 307�321.



22


