
Bull. Nov. Comp.Center, Comp. Science, 26 (2007), 39–63
c© 2007 NCC Publisher

Effective generation of verification conditions
for non-deterministic unstructured programs∗

I.S. Anureev, E.V. Bodin, N.V. Shilov

Abstract. We address a problem of efficiency of verification condition generation
for unstructured non-deterministic imperative programs. Importance of the study
is based upon two arguments:

• industrial programming is very often unstructural (e.g., extensive use of ‘go
to’ in C-programs);

• program analysis techniques (like abstraction) introduce unstructural and
non-deterministic control flow to programs.

In the structural deterministic case, verification condition generation is driven by
the rules of axiomatic semantics that are well known due to axiomatic semantics
for Pascal by A. Hoare. In this case, generation of verification condition seems to
be trivial, since its complexity is linear in the number of control structures due
to modularity of structured imperative programs. In contrast, in the unstructured
non-deterministic case, the complexity seems a priori to be exponential in the num-
ber of operators due to the exponential number of acyclic paths through a program.
We present in this paper an efficient, sound and complete verification condition gen-
erator that can be used in both cases (i.e. in unstructured non-deterministic, as
well as in structural deterministic). The generator complexity is linear in the overall
number of control constructs and operators.

1. Introduction

Formal program verification is computer-aided mathematically-rigorous prov-
ing of program correctness. A verifying compiler is a system program that
can parse, verify and build a safe executable code for an input high-level
source program. According to a Turing Prize Laureate sir C.A.R. Hoare [9],
it could be “a grand challenge for computing research”.

In this paper we address a problem of efficiency of verification condi-
tion generation for unstructured non-deterministic input-output imperative
programs annotated by loop invariants in the style of R.W. Floyd [7].

Importance of the study is based upon two arguments:

• industrial programming is very often unstructural (e.g., extensive use
of ‘go to’ in C-programs);

∗This research is supported in parts by RFBR grants 06-01-00464-a and 05-07-90162.

40 I.S. Anureev, E.V. Bodin, N.V. Shilov

• program analysis techniques (like abstraction) introduce unstructural
and non-deterministic control flow to programs.

In the structural deterministic case, verification condition generation is
driven by the rules of axiomatic semantics that are well known due to ax-
iomatic semantics for Pascal by C.A.R. Hoare and N. Wirth [8]. In this
case, generation of verification condition in a classical weakest-precondition
style of E.W. Dijkstra [5] seems to be trivial, since its complexity is linear
in the number of control structures due to modularity of structured impera-
tive programs. In contrast, in the unstructured non-deterministic case, the
complexity seems a priori to be exponential in the number of operators due
to the exponential number of acyclic paths through a program.

But in reality, even in the structured deterministic case, classical verifica-
tion condition generation requires exponential space and time. To the best
of our knowledge, all verification research and experiments fulfilled before
new millennium put up with this exponential explosion as inevitable payoff.

The first research that successfully attacked this unfeasible complexity
was reported in paper [6]. The cited paper remarks that there are two
reasons for the blow-up:

• every assignment may cause multiple instantiations of a term instead
of a variable in a postcondition,

• every choice duplicates a condition and a postcondition since it couples
it with then-branch and else-branch.

For avoiding these term multiplicity and condition duplication, paper
[6] uses fresh auxiliary variables and two special constructs assert and as-
sume. These constructs provide an opportunity to translate (in a linear
time) any non-deterministic guarded loop-free program into a so-called pas-
sive form. A program in the passive form does not change its variable values
but can terminate normally or abnormally. For any program in a passive
form, the weakest precondition for normal termination can be constructed
in a linear time and the weakest precondition for abnormal termination can
be constructed in a quadratic time. Translation to the passive form and
normal/abnormal termination condition generation altogether resulted in
a quadratic verification condition generation algorithm. This algorithm is
sound and complete for loop-free guarded structured programs. Later this
approach was extended to the unstructured case [2].

We present in this paper an efficient, sound and complete verification
condition generator that can be used in both cases (i.e. in non-deterministic
unstructured, as well as in structural deterministic). The generator com-
plexity is linear in the overall number of control constructs and operators.

The rest of the paper is organized as follows. Section 2 defines syn-
tax and semantics of assertions and Hoare triple. Section 3 defines syn-
tax and semantics of two model programming languages: mini-Pascal and

Effective generation of verification conditions 41

mini-NIL. Section 4 defines axiomatic semantics for mini-Pascal, syntax and
verification conditions for annotated mini-Pascal. This section also discuss
complexity of the problem of verification condition generation. After that
annotated mini-NIL programs and Floyd verification method are discussed
in section 5. Verification (or Floyd) conditions for annotated mini-NIL are
discussed in Section 6. Our main result – the system of verification condi-
tions – is presented in Section 7. Concluding remarks, research background
and topics for further research are discussed in Section 8.

2. Background: assertion language and Hoare triples

A many-sorted system is a (non-empty) set of values that is a disjoint union
of sorts (or types) provided with a collection of named ground operations1

and a disjoint collection of named ground properties2 with fixed signatures,
i.e.

• for every operation, the types of its arguments and results are defined;

• for every ground property, the types of its arguments are defined.

Thus, a data type is a set of values provided with a list of all ground opera-
tions, that can use these values as arguments or return these values as their
values, and provided with a list of all ground properties, that can use these
values as arguments.

Assume that we are given a many-sorted system and a set of typed
variables3. Terms (and their types) are type-correct expressions constructed
from variables and operation names in accordance with standard rules: every
variable is a term whose type is the type of the variable; if n ≥ 0 is an arity of
some ground operation named ‘ρ’, and types of its arguments and its result
are type1, . . . typen, type, and τ1, . . . τn are terms of types type1, . . . typen,
respectively, then ρ(τ1, . . . τn) is a term and type is its type. Atoms are type-
correct expressions constructed from the terms and ground properties in
accordance with standard rules: if n ≥ 0 is an arity of some ground property
named ‘π’, the types of its arguments are type1, . . . typen, and τ1, . . . τn

are the terms of types type1, . . . typen, respectively, then π(τ1, . . . τn) is an
atom.

Let us assume in the sequel that all terms are represented as strings. For
any term τ let |τ | be the total number of variables and operations in the
term.

A state is a mapping σ that assigns to every variable its value compatible
with its type. Let us denote by Σ the set of all states. For every state σ ∈ Σ,

1including the names of constants, i.e. the names for nullary operations
2that includes typed and/or polymorphic equality ‘=’
3i.e. an alphabet of variable names (identifiers) with assigned types: for every variable

x its assigned data type is called an x-type

42 I.S. Anureev, E.V. Bodin, N.V. Shilov

every variable x, and every value v of x-type, let4 upd(σ, x, v) be a state that
is equal to σ everywhere but x, and equals v on x:

upd(σ, x, v)(y) =
{

σ(y), if y is not x;
v otherwise.

Every state σ ∈ Σ can be extended on all terms in the standard manner:
for every type-correct term ρ(τ1, . . . τn) let σ(ρ(τ1, . . . τn)) be the result of
application of the operation named ρ to arguments σ(τ1), ... σ(τn).

Definition 1. An assertion language is a first-order typed language of
formulas that are constructed from atoms in accordance with the standard
rules:

• Every atom is a formula.

• Negation (¬φ), conjunction (φ∧ψ), and disjunction (φ∨ψ) of formulas
are formulas also.

• For every variable x, universal (∀x. φ) and existential (∃x. φ) quan-
tifications of a formula are formulas.

Implication (φ → ψ) and equivalence (φ ↔ ψ) of formulas are standard
abbreviations for ((¬φ) ∨ ψ) and ((φ → ψ) ∧ (ψ → φ)), respectively.

Let us assume in the sequel, that all formulas are represented as strings.
For any formula φ, let |φ| be the total number of constructs ‘¬’, ‘∧’, ‘∨’, ‘∀’,
and ‘∃’ in φ, and τ(φ) be the maximal value of |τ | such that a term τ occurs
in φ. An instance of a variable x is free/bound in a formula if it is out of/in
THE range of any ‘∀x’ or ‘∃x’. For every formula φ, variable x and term τ ,
let φτ/x denote a formula that results from φ after substitution of τ instead
of all free instances of x.

Definition 2. Semantics of assertions is defined in terms of entailment
relation ‘|=’ between states and formulas in the standard way.

• For atoms: σ |= π(τ1, . . . τn) iff
a tuple of values (σ(τ1), . . . σ(τn)) satisfies the ground property

named ‘π’.

• σ |= (¬φ) iff it is not the case σ |= φ,
σ |= (φ ∧ ψ) iff σ |= φ and σ |= φ,
σ |= (φ ∨ ψ) iff σ |= φ or σ |= φ.

• σ |= (∀x. φ) iff upd(σ, x, v) |= φ for every value v of x-type;
σ |= (∃x. φ) iff upd(σ, x, v) |= φ for some value v of x-type.

An assertion φ is valid (|= φ), if it holds in all states, i.e. σ |= φ for every
σ ∈ Σ.

4‘upd’ = ‘update’

Effective generation of verification conditions 43

Proposition 1. For every formula φ, variable v, term τ , and state σ ∈ Σ,
the following equivalence holds: σ |= φτ/x iff upd(σ, x, σ(τ)) |= φ.

A programming language is a collection of ‘programs’. IO-semantics5

for a programming language L is a mapping S : L → 2Σ×Σ that assigns a
binary relation S(P) ⊆ Σ× Σ to every program P ∈ L.

Definition 3. Let L be a programming language. A (Hoare) triple is a
sentence of the form {φ}P{ψ}, where φ and ψ are assertions, and P ∈ L
is a program. If S is an IO-semantics for L, then a triple {φ}P{ψ} is said
to be S-valid6 (S |= {φ}P{ψ})7, if for every states σ′, σ′′ ∈ Σ such that
(σ′, σ′′) ∈ S(P), σ′ |= φ implies σ′′ |= ψ.

3. Programming languages: mini-Pascal and mini-NIL

Below we define two toy programming languages: a structural deterministic
language mini-Pascal and an unstructural non-deterministic language mini-
NIL.

Mini-Pascal is a subset of the Pascal language extended by guards (or
tests) and an explicit empty (or skip) action8. It is designed for research
purposes and is free from all ‘cumbersome’ programming constructs and
types like ‘go to’, procedures and definable functions, pointers. The language
is provided with structural operational semantics.

Definition 4. Mini-Pascal programs are constructed from assignments,
guards, and the empty operator by means of sequential composition ‘;’,
deterministic choice ‘if-then-else’, and deterministic iteration ‘while-do’ as
follows:

• The empty (or skip) action is an expression ‘skip’. This expression is
a program.

• An assignment is an expression of the form ‘x := τ ’, where x is a
variable and τ is a term of x-type. Every assignment is a program.

• A guard (or test) is an expression of the form ξ?, where ξ is a quantifier-
free assertion. Every guard is a program.

• If α and β are programs then (α ; β) is also a program.

• If ξ is a quantifier-free formula, and α and β are programs, then
(if ξ then α else β) is also a program.

5i.e. Input-Output semantics
6or simply valid when semantics is implicit
7|= {φ}P{ψ} when semantics is implicit
8Guards and the empty action are syntactic sugar, but they makes many ideas more

transparent.

44 I.S. Anureev, E.V. Bodin, N.V. Shilov

• If ξ is a quantifier-free formula and α is a program, then (while ξ do α)
is also a program.

Let us assume in the sequel, that all mini-Pascal programs are repre-
sented as trees that correspond to their grammar structure: all leaves are
empty actions, guards and assignments, all other nodes are constructs ‘;’,
‘if-then-else’, and ‘while-do’.

Definition 5. Structural Operational Semantics (SOS) for mini-Pascal is
defined by the following inference system (σ, σ′, σ′′, σ′′′ are states within
Σ):

σ〈ξ?〉σ , if σ |= ξ σ〈skip〉σ

σ〈x:=τ〉upd(σ, x, σ(τ))
σ′〈α〉σ′′ , σ′′〈β〉σ′′′

σ′〈(α ; β)〉σ′′′

σ′〈α〉σ′′
σ′〈(if ξ then α else β)〉σ′′ , if σ′ |= ξ

σ′〈β〉σ′′
σ′〈(if ξ then α else β)〉σ′′ , if σ′ |= (¬ξ)

σ′〈α〉σ′′, σ′′〈(while ξ do α)〉σ′′′
σ′〈(while ξ do α)〉σ′′ , if σ′ |= ξ σ〈(while ξ do α)〉σ , if σ |= (¬ξ)

For any mini-Pascal program α, let SOS(α) be the following binary relation:

{(σ′ , σ′′) ∈ Σ× Σ : σ′〈α〉σ′′ is provable in the above inference system}.

The mini-NIL language is designed for approbation of the basic concepts
of a verification project F@BOOL@9 [3, 4]. The language is provided with
a small step operational semantics.

Definition 6. Let labels be unsigned integers 0, 1, 2, ... An assignment
operator is an expression of the form ‘l : x := τ goto L’, where l is a label,
x is a variable, τ is a term of x-type, and L is a finite set10 of labels; an
expression ‘x := τ ’ is called a body of this operator. A condition operator
is an expression of the form ‘l : if ξ then L+ else L−’, where l is a label, ξ
is a quantifier-free formula, L+ and L− are finite sets10 of labels; a formula
‘ξ’ is called a body of this operator. A mini-NIL program is a finite set of

9Please refer to the concluding section 8 for some details about F@BOOL@.
10The empty set is admissible.

Effective generation of verification conditions 45

operators11 such that any label marks one operator at most. A label ‘0’
(zero) is called an initial (or start) of any mini-NIL program. A final (or
terminal) label of a mini-NIL program is any label that has an instance in
the program but does not mark any operator12. If S is a mini-NIL program,
then let us denote the set of its final labels by F (S) (or simply F when S is
implicit).

Let us also assume in the sequel, that all mini-NIL programs are repre-
sented in a linear form, i.e. as lists of operators.

Informally speaking, execution of a mini-NIL program starts from any
operator marked by the label ‘0’ and finishes with a pass of control to any
label that does not mark any operator in the program.

Definition 7. A configuration is a pair of the form (l, σ), where l is a label
and σ is a state. A firing of an assignment operator ‘l : x := τ goto L’ is a
pair of configurations ((l, σ), (l′, σ′)), where l′ ∈ L and σ′ = upd(σ, x, σ(τ)).
A firing of a condition operator ‘l : if ξ then L+ else L−’ is a pair of
configurations (l, σ) (l′, σ), where l′ ∈ L+, if σ |= ξ, or l′ ∈ L− otherwise.

Definition 8. Assume that we are given a mini-NIL program P . A step
(or small step) of P is a firing of any operator in P . A start configuration
of P is any configuration with the label 0. A final configuration of P is any
configuration with a label that does not mark any operator in P . A trace of
P is any finite sequence of configurations such that every consequential pair
of configurations within the sequence is a step of P . A computational trace
of P is a trace that starts with a start configuration and finishes with a final
configuration. For any mini-NIL program P , let SSS(P) be the following
binary relation:

{(σ′ , σ′′) ∈ Σ× Σ : there is a computational trace of P
that starts with the state σ′ and finishes with the state σ′′}.

4. Axiomatic semantics and annotated mini-Pascal

The Pascal language has been provided with the axiomatic semantics in [8].
This semantics is presented as an inference system for reasoning about Hoare
triples for Pascal programs. It is sound in the following sense: for every
inference tree, if all leaves of the tree are either axioms or valid assertions,
then the tree infers a valid Hoare triple. Below we present a similar inference
system but for mini-Pascal.

11i.e. the assignment and condition operators
12It means that a terminal label occur in ‘goto’, ‘then’, or ‘else’ section(s) of some

operator(s) but does not mark any operator in the program.

46 I.S. Anureev, E.V. Bodin, N.V. Shilov

Definition 9. The axiomatic semantics (AxS) for mini-Pascal is defined
by the following inference system13 :

T : {(ξ→ψ}ξ?{ψ} E : {(ψ}skip{ψ}

A : {ψτ/x}x:=τ{ψ} S : {φ}α{χ}, {χ}β{ψ}
{φ}(α ; β){ψ}

C : {(φ∧ξ)}α{ψ}, {(φ∧(¬ξ))}β{ψ}
{φ}(if ξ then α else β){ψ} L : {(ι∧ξ)}α{ι}

{ι}(while ξ do α){(ι∧(¬ξ))}

Mpre : (φ→χ), {χ}α{ψ}
{φ}α{ψ} Mpst : {φ}α{χ}, (χ→ψ)

{φ}α{ψ}

A semi-proof is an inference tree in the axiomatic semantics such that all
its leaves are either instances of axioms T , E, and A, or (program-free)
assertions; all assertions in a semi-proof are called verification conditions for
this semi-proof. A proof in the axiomatic semantics is a semi-proof such
that all its verification conditions are valid assertions. A triple {φ}α{ψ} is
said to be provable in the axiomatic semantics (`AxS {φ}α{ψ}), if there
exists a proof with {φ}α{ψ} in the root. A set of assertions V C is a set of
verification conditions for a triple, if the triple has a semi-proof with V C as
its verification conditions.

The axiomatic semantics of mini-Pascal is sound in the following sense.

Proposition 2. Every provable Hoare triple is SOS-sound.

Proof. A standard induction on the height of a proof-tree. ¥
The major problem with proving Hoare triples is to construct a set of

verification conditions. To overcome the trouble, it makes sense to ask a
developer to provide a program with ‘invariants’ for all loops. It leads to
the notion of annotated mini-Pascal programs.

Definition 10.
An annotated mini-Pascal program is a program, where every ‘while-do’
loop is tagged by an assertion. This assertion is called an invariant of the
corresponding loop. If ι is an invariant of a loop, then it is tagged to the

13‘T’= ‘Test’, ‘E’= ‘Empty’, ‘A’= ‘Assignment’, ‘S’= ‘Sequencing’, ‘C’= ‘Choice’,
‘L’= ‘Loop’, ‘M’= ‘Modification’.

Effective generation of verification conditions 47

corresponding ‘while’ as a superscript ‘whileι’. Hoare triple with annotated
mini-Pascal program is Hoare-valid, if it has a proof in the axiomatic se-
mantics such that all instances of the Loop rule L in the proof use tagged
loop invariants: {(ι∧ξ)}α{ι}

{ι}(whileι ξ do α){(ι∧(¬ξ))} .

Let us define below two recursive algorithms wp and vc. Both algorithms
have two arguments: an annotated mini-Pascal program and an assertion.
The algorithm wp returns an assertions, the algorithm vc returns a set of
assertions.

Algorithm 1.

• wp(ξ?, ψ) = (ξ → ψ)

• wp(skip, ψ) = ψ

• wp(x := τ, ψ) = ψτ/x

• wp((α;β), ψ) = wp(α, wp(β, ψ))

• wp((if ξ then α else β), ψ) = ((ξ∧wp(α, ψ)) ∨ ((¬ξ)∧wp(β, ψ)))

• wp((whileι ξ do α), ψ) = ι

Algorithm 2.

• vc(ξ?, ψ) = ∅
• wp(skip, ψ) = ∅
• vc(x := τ, ψ) = ∅
• vc((α;β), ψ) = vc(α, wp(β, ψ)) ∪ vc(β, ψ)

• vc((if ξ then α else β), ψ) = vc(α, ψ) ∪ vc(β, ψ)

• vc((whileι ξ do α), ψ) =
vc(α, ι) ∪ {((ι ∧ (¬ξ)) → ψ) , ((ι ∧ ξ) → wp(α, ι))}

Proposition 3.

1. For every annotated mini-Pascal program α and every assertion ψ, the
cardinality of a set vc(α, ψ) is the doubled number of while-loops in
α.

2. There are some exponential functions T (x, y) and S(x, y) of integer
arguments such that for every annotated mini-Pascal program α and
every assertion ψ the run-time of the algorithm wp(α, ψ) and the size
of the assertion wp(α, ψ) have upper bounds T (m, n) and S(m,n),
where m and n are the sizes of α and ψ, respectively.

48 I.S. Anureev, E.V. Bodin, N.V. Shilov

Table 1. Sample programs that are exponentially hard for Algorithms 1 and 2

αk βk

x1 := f(x0, x0); if p(x)
then x := g(x)

else x := h(x);
x2 := f(x1, x1); if p(x)

then x := g(x)
else x := h(x);

.....................
xn−1 := f(xk−2, xk−2); if p(x)

then x := g(x)
else x := h(x);

x := f(xk−1, xk−1); if p(x)
then x := g(x)

else x := h(x);

3. There exists an assertion ψ and an infinite series of annotated mini-
Pascal programs αk, k ≥ 0, where programs are of the size proportional
to k, such that the run-time of the algorithm wp(αk, ψ) and the size
of terms in the assertion wp(αk, ψ) have lower bounds 2k.

4. There exists an assertion ψ and an infinite series of annotated mini-
Pascal programs βk, k ≥ 0, where programs are of the size proportional
to k, such that the run-time of the algorithm wp(βk, ψ) and the size
of assertions wp(βk, ψ) have lower bounds 2k, while all terms in these
assertions have a constant size.

Proof. The first statement (about cardinality) is trivial to prove by struc-
tural induction. The second statement also can be proved by structural
induction. A very detailed parametric analysis of these functions has been
carried out in [1]. The last two statements (lower bounds) can be proved
by two parameterized examples that are presented in Tab. 1. It is easy to
see that wp(αk, c = x) is c = τk, where τk is a term that is an isomorphic
complete binary tree of height k. Similarly, wp(βk, c = x) is a formula φk

being represented by a decision tree, it contains a subtree that is isomorphic
to the complete binary tree of height k. Both facts are easy to prove by
induction. Please refer to Figure 1 for illustration: the left part depicts τ3,
the right part – φ2. ¥

The above algorithms 1 and 2 are very important for formal verification
due to the following proposition.

Effective generation of verification conditions 49

Proposition 4.

• For every Hoare triple {φ}α{ψ} with an annotated mini-Pascal
program, the triple {φ}α{ψ} is Hoare-valid iff it has a proof (in the
axiomatic semantics) with a set of verification conditions
{(φ → wp(α, ψ))} ∪ vc(α, ψ).

• For every Hoare triple {φ}α{ψ} with a loop-free mini-Pascal program,
the triple {φ}α{ψ} is SOS-valid iff its single verification condition
(φ → wp(α, ψ)) is valid.

Proof. The first statement has a trivial and non-so-trivial parts. A trivial
part is: if a triple {φ}α{ψ} has a proof with a set of verification conditions
{(φ → wp(α, ψ))} ∪ vc(α, ψ), then it is Hoare-valid. A non-so-trivial
part is the backward implication. But this implication can be proved by
induction on the height of a proof tree for a Hoare-valid triple.

The second stament also comprises two implications. The trivial impli-
cation states that SOS-validity follows from validity of the single verification
condition. It follows from the first statement of Proposition 3. The back-
ward implication states that validity of the verification condition follows
from SOS-validity of a loop-free triple. A proof can be carried out by in-
duction on the height of a syntax tree of a loop-free program. It has been
proved first in more general settings in [5]. ¥

The above proposition implies that for any triple {φ}α{ψ} with an-
notated mini-Pascal program, the proof-search in the axiomatic seman-
tics is equivalent to validation of the following set of assertions: {(φ →
wp(α, ψ))} ∪ vc(α, ψ). It means that the algorithms wp and vc provide
us with a method of verification condition generation for Hoare triples with
annotated mini-Pascal programs. Proposition 4 states that the method is
sound and complete with respect to Hoare-validity. Together with the sound-
ness of the axiomatic semantics (Proposition 2), it implies the next corollary.

f p(x)
/ \ + ↙ ↘ −

f f p(g(x)) p(h(x))
/ | | \ + ↙ ↓ − + ↓ ↘ −

f f f f c = g(g(x)) c = h(g(x)) c = g(h(x))) c = h(h(x))
/\ /\ /\ /\

x0x0x0x0 x0x0x0x0

Figure 1. Tree representation of a term τ3 and a formula φ2

50 I.S. Anureev, E.V. Bodin, N.V. Shilov

Corollary 1. For every Hoare triple {φ}α{ψ} with an annotated mini-
Pascal program, if all assertions in a set {(φ → wp(α, ψ))} ∪ vc(α, ψ) are
valid, then the triple {φ}α{ψ} is SOS-valid.

But the exponential space and time complexity (Proposition 3) of Algo-
rithms 1 and 2 makes them impractical. To the best of our knowledge, all
verification research and experiments fulfilled before new millennium put up
with this exponential explosion as inevitable payoff.

The first research that successfully attacked this unfeasible complexity
was reported in paper [6]. The cited paper remarks that there are two
reasons for the blow-up:

• every assignment x := τ may cause multiple instantiations of the term
τ instead of the variable x in a postcondition ψ;

• every choice if ξ then α else β duplicates the condition ξ and post-
condition ψ, since it couples it with then-branch α and else-branch
β.

For avoiding these term multiplicity and condition duplication, paper [6]
uses fresh auxiliary variables and two special constructs assert and assume
(the last is equivalent to our guard). These constructs provide the opportu-
nity to translate (in a linear time) any non-deterministic guarded loop-free
program into the so-called passive form. A program in the passive form
does not change its variable values but can terminate normally or abnor-
mally. For any program in the passive form, the weakest precondition for
normal termination can be constructed in the linear time and the weakest
precondition for abnormal termination can be constructed in the quadratic
time. Translation to the passive form and normal/abnormal termination
condition generation resulted in the quadratic verification condition genera-
tion algorithm. This algorithm is sound and complete for loop-free guarded
structured programs. Later this approach was extended to the unstructured
case [2].

We can not explain the method of [6, 2] in full details, since mini-Pascal
has no explicit assert construct. But we still can provide some ‘flavor’ of
the basic ideas of [6, 2]. Roughly speaking, to avoid exponential explosion,
we need to modify the wp algorithm 1. Algorithm 3 below is an optimized14

version of Algorithm 1. The revised algorithm rewp also has two arguments
(an annotated mini-Pascal program and an assertion) and returns an asser-
tions. It is assumed that the algorithm has an access to a global stack of
auxiliary variables with an unbounded amount of fresh variables of any legal
type.

14It is just an optimized version! We do not claim that it is quadratic in time and space!

Effective generation of verification conditions 51

Algorithm 3.

• rewp(ξ?, ψ) = (ξ → ψ);

• rewp(skip, ψ) = ψ;

• rewp(x := τ, ψ) = ∃y. (y = τ ∧ ψy/x), where

– y is a fresh variable of x-type;

• rewp((α; β), ψ) = rewp(α, wp(β, ψ));

• rewp((if ξ then α else β), ψ) =
= ∃y.(ψy/x ∧ ((ξ ∧ rewp(α, y = x)) ∨ ((¬ξ) ∧ rewp(β, y = x)))),
where

– x is a vector of all free variables in the formula ψ,
– y is a vector of fresh variables component-wise type-compatible

with x,
– ψy/x denotes a component-wise substitution of y instead of x in

ψ,
– y = x is a conjunction of component-wise equalities;

• rewp((whileι ξ do α), ψ) = ι.

Proposition 5. For every annotated mini-Pascal program α and every
assertion ψ, the formulas wp(α, ψ) and rewp(α, ψ) are equivalent.

Let us note that, while this algorithm is still exponential in size of the
constructed assertion (due to duplication of a post-condition ‘y = x ’ in
choice), it is not exponential in the size of terms, and it duplicates a fixed
postcondition (that is a system of equalities between variables).

5. Floyd method for annotated mini-NIL

There are several very useful graphs related to unstructured programs. We
are most interested in flowcharts and control-passing graphs. A flowchart
representation of a mini-NIL program is comprehensive. In contrast, a
control-passing graph represents only a part of information about a mini-NIL
program.

Definition 11. A flowchart of a mini-NIL program is a directed graph,
where nodes correspond (in 1-to-1 manner) to labels and operator’s bodies,
and edges (also in 1-to-1 manner) – to control-passing: from a label – to a
body of an operator that is marked by this label (if any), from an operator
body – through ‘goto’ or ‘then’ and ‘else’ – to other labels (if any); edges
that correspond to control-passing through ‘then’ are marked by ‘+’ and
edge that and correspond to control-passing through ‘else’ are marked by
‘–’.

52 I.S. Anureev, E.V. Bodin, N.V. Shilov

Definition 12. A control-passing15 graph of a mini-NIL program is a di-
rected graph, where nodes correspond (in 1-to-1 manner) to labels, and
edges to control-passing between labels (ignoring operator bodies): there is
an edge from a label ‘k’ to a label ‘l’ iff an operator marked by ‘k’ passes a
control to the label ‘l’ through ‘goto’, ‘then’ or ‘else′.

Due to these representations, we can extend the graph-theoretic termi-
nology to mini-NIL programs. For example, we can speak about a path
between two labels (nodes) of a program, a cycle, etc.

Definition 13.
An annotated mini-NIL program is a program, where some labels are tagged
by assertions in such a way that the following annotation conditions hold:

• The initial label ‘0’ is tagged by an assertion.

• All final labels are tagged by some assertion (one and the same for
all).

• Every cycle through the program flowchart contains a tagged label.

If a label l has a tagged assertion, then the label is called a contract point
and the assertion is called an invariant of the label. If φ is an invariant of
a label l in an annotated mini-NIL program, then it is tagged to the label
as a superscript ‘lφ’. If a label l of an annotated mini-NIL program has an
invariant, then let us refer to this invariant as φl. Let us refer to a common
invariant of all final labels as φF .

The primary topic of our paper is efficient generation of verification con-
ditions. So it is very important to evaluate the complexity of all related
algorithms. For this let us fix a number of parameters that contribute to
the complexity of the algorithms. For any assertion ψ, two parameters |ψ|
and τ(ψ) are already in use. Let us define similar parameters for (anno-
tated) mini-NIL programs. For any annotated mini-NIL program P , let |P |
be the size of P (i.e. the overall number of symbols in P as a word including
invariants), let n(P) be the number of operators that occur in P , and let
l(P) be the number of labels that occur in P . In the sequel we assume that
mini-NIL programs are represented in a linear form as lists of operators.

Proposition 6. Annotation correcteness for mini-NIL programs can be
checked in the cubic time O(|P | × l(P)2).

15We use the term ‘control-passing’ instead of a more conventional ‘control-flow’ to
avoid ambiguities with ‘flow-chart’.

Effective generation of verification conditions 53

Proof. It is very easy to check (in a time linear in |P |) that the initial
label ‘0’ has an invariant. It is a little bit more complicated to check (in a
time squared in |P |) that all final labels have a joint invariant. It is more
challenging to check whether every cycle through a flowchart contains a
contract point. But it can be carried out as follows.

The control-passing graph G for P can be constructed in time O(|P | ×
l(P)2) by scanning P . Then in time O(l(P)2) it is possible to assign an
infinite weight ∞ to all edges that lead to contract points, and weight 1 to
all other edges. After that we are in conditions of Floyd-Warshall’s algorithm
that computes the weights of the lightest paths between all pairs of nodes
of a weighted graph. This algorithm requires the cubic time O(l(P)3). A
criterion follows: every cycle through a flowchart contains a contract point
iff for every label (i.e. a node of G) the lightest path from this label to itself
has infinite weight. ¥

Let us define below a recursive algorithm mP that converts every non-
empty path between any two labels (maybe equal) in a flowchart of a mini-
NIL program to a corresponding mini-Pascal program that is a sequential
composition of a single empty construct and a number of assignments and
tests. Observe that every non-empty path of this kind should begin with
a label and then repeat several times the following pattern: ‘an edge’ - ‘a
body of operator’ - ‘an edge (marked by ‘+’ or ‘–’ maybe)’ - ‘a label’. Due
to this reason, the algorithm has four patterns for a path:

• ‘prefix’ - ‘edge’ - ‘assignment body’ - ‘unmarked edge’ - ‘label’;

• ‘prefix’ - ‘edge’ - ‘quantifier-free formula’ - ‘edge marked by +’ - ‘label’;

• ‘prefix’ - ‘edge’ - ‘quantifier-free formula’ - ‘edge marked by –’ - ‘label’;

• ‘label’.

Algorithm 4.

• mP (π → x := τ → l) = (mP (π) ; x := τ);

• mP (π → ξ
+→ l) = (mP (π) ; ξ?);

• mP (π → ξ
−→ l) = (mP (π) ; (¬ξ)?);

• mP (l) = skip.

Definition 14. Let P be an annotated mini-NIL program. A contract-free
path (through P) is any path through the flowchart that has no instances of
contract points inside (but that can start and/or end in a contract point).
The program P is said to be Floyd-valid if for every pair of contract points
l and k, for every contract-free path π from k to l through the flowchart,
the following triple {φk} mP (π) {φl} is valid: |= {φk} mP (π) {φl}.

54 I.S. Anureev, E.V. Bodin, N.V. Shilov

Proposition 7. For every Floyd-valid annotated mini-NIL program P ,
Hoare triple {φ0}P{φF } is SSS-valid.

Proof. This proposition follows from the next statement: for every trace
that starts and finishes in any contract points k and l of a Floyd-valid
program P, if this trace starts in a state σ′ |= φk, then it finishes in a
state σ′′ |= φl. This statement can be proved by induction on the number
of instances of contract points in the trace. In deterministic settings this
statement has been proved for the first time in [7]. ¥

6. Floyd and verification conditions for mini-NIL

The next proposition follows from part 2 of Proposition 4.

Proposition 8. For every annotated mini-NIL program P , P is Floyd-valid
iff for every pair of contract points l and k, for every non-empty contract-
free path π from k to l through the flowchart, the following assertion (φk →
wp(mP (π), φl)) is valid.

This proposition leads to the next definition.

Definition 15. For every annotated mini-NIL program P , a set of Floyd
conditions is any set of assertions of the following kind:

{(φk → θ(l, π)) : k and l are contract points,
π is a non-empty contract-free path from k to l through the flowchart,

and the assertion θ(l, π) is equivalent to wp(mP (π), φl)}.

The next proposition follows immediately from Proposition 8 and Defi-
nition 15.

Proposition 9. For every annotated mini-NIL program P and any set of
Floyd conditions FC, P is Floyd-valid iff all assertions in FC are valid.

Every annotated mini-NIL program P has the following canonical set of
Floyd conditions:

{(φk → wp(mP (π), φl)) : k and l are contract points,
π is a non-empty contract-free path from k to l through the flowchart}.

Unfortunately, construction of the canonical Floyd conditions can be expo-
nential in time and in space due to

• consequential substitutions of terms instead of variables,

• exponential number of contract-free paths between contract points.

Effective generation of verification conditions 55

We already know how to cope with the first problem: it is possible to use
rewp instead of wp. In particular, we can define another set of Floyd con-
ditions

{(φk → rewp(mP (π), φl)) : k and l are contract points,
π is a non-empty contract-free path from k to l through the flowchart}.

Let us refer to this set as the improved Floyd conditions (for P). Every
assertion in the improved Floyd set has a linear size. But we still do not
know how to reduce the exponential number of improved Floyd conditions.
The problem looks like a reincarnation of the exponential explosion through
the choice constructs in mini-Pascal.

An alternative to exponentially large sets of Floyd conditions are the sets
of verification conditions that always consist of a linear number of assertions.

Definition 16.

• For every annotated mini-NIL program P , for every label16 k within
this program, let wp(k) be the following formula

∧

l is a contract point,

π is a non-empty contract-free path to l

wp(mP (π), φl).

• For every annotated mini-NIL program P , a set of verification condi-
tions is any set of assertions

{(φk → θk) : k is a contract point, and assertion θk is equivalent to wpk}.

Every annotated mini-NIL program P has the following canonical set
of verification conditions {(φk → wpk) : k is a contract point}. The next
proposition immediately follows from Definition 16 and Proposition 8.

Proposition 10. For every annotated mini-NIL program P and any set
of verification conditions V C, P is Floyd-valid iff all assertions in V C are
valid.

As follows from the above proposition, efficient generation of a set of ver-
ification conditions is very important for verification of mini-NIL programs.
By definition, the number of assertions in every set of verification condi-
tions for an annotated mini-NIL program is not greater than the number
of contract points in the program, i.e. cardinality of a set of verification
conditions is ‘tiny’ with respect to exponential cardinality of a set of Floyd

16not necessary a contract point

56 I.S. Anureev, E.V. Bodin, N.V. Shilov

conditions. But construction of assertions in the canonical set can be expo-
nential in time and in space due to the same reasons as for the canonical
Floyd conditions. Again we can use rewp instead of wp. But we still do not
know how to handle exponential explosion that is due to the exponential
number of paths.

7. System of verification conditions

Lemma 1. Let P be an annotated mini-NIL program. For any label k that
is not a contract point, the following holds:

• if k marks an assignment operator ‘k : x := τ goto L’ then

wpk ↔ ∃y.(y = τ ∧
∧

l∈L

(wp′l)y/x),

• if k marks a condition operator ‘k : if ξ then L+ else L−’ then

wpk ↔ (ξ →
∧

l∈(L+)

wp′l) ∧ ((¬ξ) →
∧

l∈(L−)

wp′l),

where ‘y’ is any fresh variable of x-type, and

wp′l =
{

wpl , if l is not a contract point;
φl , if l is a contract point

Please refer to Appendix A for proof.
The above lemma leads to the next definition, where we assume that

we have the unbounded amount of uninterpreted predicate symbols of any
signature (i.e. argument types).

Definition 17. Let P be an annotated mini-NIL program. Let var be a
list z0, z1, . . . of all variables that occur in P (but are not bounded in any
invariant). For every label k in P , let θk be a fresh uninterpreted predicate
symbol with a signature that component-wise matches the types of variables
in var; for every list of terms ter that is component-wise type-compatible
with var, let θk(ter) be a formula that results from instantiating terms from
ter instead of the corresponding formal arguments in θ. For every label
k within P , let a verification equation EQk be the following formula with
uninterpreted symbols:

• if k marks an assignment operator ‘k : x := τ goto L’ then

θk(var) ↔ ∃y.(y = τ ∧
∧

l∈L

(θ′l(var))y/x),

• if k marks a condition operator ‘k : if ξ then L+ else L−’ then

Effective generation of verification conditions 57

θk(var) ↔ (ξ →
∧

l∈(L+)

θ′l(var)) ∧ ((¬ξ) →
∧

l∈(L−)

θ′l(var)),

where ‘y’ is any fresh variable of x-type, and

θ′l =
{

θl , if l is not a contract point;
φl , if l is a contract point

Let the system of verification equations (for P) be the following universally
quantified conjunction of all verification equations:

∀var.(
∧

kis a labell in P

EQk)

where a quantifier prefix ‘∀var.’ is a shorthand for ∀z0.∀z1. . . .

Definition 18. Let P be an annotated mini-NIL program. A solution
of the system of verification equations for P is any interpretation I of
predicate symbols θk (k is a label) that makes the system valid: I |=
∀var.(

∧
kis a labell in P EQk).

Lemma 2. For every annotated mini-NIL program, its system of verifica-
tion equations has a unique solution. This solution is I(θk(ver)) = wpk

for every label k within the program.

Please refer to Appendix B for proof.

Theorem 1. Let P be an annotated mini-NIL program and SP be its system
of verification equations with uninterpreted symbols {θl : l is a label within P}.

1. The system SP consists of a linear number of equations (at most n(P))
and can be constructed in quadratic space and time O(n(P)× |P |).

2. The following assertion SP → (
∧

k is a contract point in P (φk → θk)) is
valid iff P is Floyd valid.

Proof. The first statement is quite simple. The system consists of n(p)
equations at most, since final labels have no corresponding equations. Then
each equation is constructed by scanning the corresponding operator in
O(|P |) time and space. The second state follows from Lemma 2 and
Proposition 10: for any interpretation I of uninterpreted symbols
{θl : l is a label within P},

• if I |= SP holds, then I is a solution of the system and (by Lemma 2)
I(θk) = wpk for every contract point;

• hence, I |= (
∧

k is a contract point in P (φk → θk)) is equivalent to

58 I.S. Anureev, E.V. Bodin, N.V. Shilov

|= (
∧

k is a contract point in P

(φk → wpk)),

i.e. to Floyd validity (according to Proposition 10).

¥

8. Concluding remarks

Let us sketch first how to expand the efficient verification condition gener-
ation to deterministic structured programs, to cover both mini-Pascal and
mini-NIL. Assume that we are given Hoare triple {phi}α{psi} with an anno-
tated mini-Pascal program. Translate this triple to an annotated mini-NIL
program in accordance with the following ‘algorithm’.

Algorithm 5.

1. Translate α to a mini-NIL program mN(α) ignoring annotations. In
this translation, every loop ‘while ξ do . . . ’ corresponds to some set of
operators with some ‘loop-heading’ conditional operator ‘l : if ξ then
{start body} else {exit loop}’.

2. Annotate mini-NIL program mN(α) as follows: tag the initial label
‘0’ as φ, the final label(s) in P (α) as ψ, and tag labels of loop-heading
conditional operators as invariants of corresponding while-loops. Let
aN({phi}α{psi}) be the resulting annotated mini-NIL program.

Hoare triple with annotated mini-NIL program
annotated mini-Pascal program

{a ≥ 1} 0a≥1 : x := a goto {1}
x := 1 ; y := 1 ; 1 : y := 1 goto {2}

whiley=x2 ∧ (x−1)2<a y ≤ a do 2y=x2 ∧ (x−1)2<a : if y ≤ a then {3} else {5}
(y := y + 2× x + 1 ; x := x + 1) 3 : y := y + 2× x + 1 goto {4}

; x := x− 1 4 : x := x + 1 goto {2}
{x2 ≤ a ∧ (x + 1)2 > a} 5 : x := x− 1 goto {6x2≤a ∧ (x+1)2>a}

Figure 2. Example of translation

We do not provide the details how to translate mini-Pascal to mini-NIL
ignoring annotations. But Figure 2 presents an example of translation of
Hoare triple with an annotated mini-Pascal program to an annotated mini-
NIL program. Nevertheless, we can claim that in the general case this
translation can be carried out in a time linear in size of a triple so that
the following equivalence holds: {phi}α{psi} is Hoare-valid iff the program

Effective generation of verification conditions 59

aN{phi}α{psi}) is Floyd-valid. In this way we can expand the efficient
verification condition generation to deterministic structured programs.

Then let us sketch a background of this research on efficient generation
of compact verification conditions presented in this paper. This research
is a part of the F@BOOL@ project. The primary target of the project
is to develop a transparent, compact, and portable verifying compiler for
component-based programs. It is assumed that F@BOOL@ will exploit effi-
cient decision procedures for validation of correctness conditions (instead of
semi-automatic theorem provers). In particular, F@BOOL@ will extensively
use SAT-solvers for validation of Boolean encoding of correctness conditions.
The target group of F@BOOL@ users comprises Computer Science, Informa-
tion Technology and Mathematics students willing to comprehend program
verification.

The major outcome of the presented research is the following explicit
alternatives for verification of annotated mini-NIL programs:

• to generate and verify exponentially many Floyd conditions of linear
size;

• to generate and verify a small set (linear in the number of elements)
of exponentially big verification conditions;

• to generate (in accordance with theorem 1) and verify a single and rel-
atively small (quadratic in size) assertion with uninterpreted predicate
symbols.

Which alternative is better in practice is a topic for further experimental
research. But in the context of the project F@BOOL@, generation and
verification of improved canonical Floyd conditions should be more efficient.
F@BOOL@ approach assumes propositional encoding of first-order formulas
over a ring of residuals and then validation by SAT-solvers. Hence the size
of formulas and the absence of uninterpreted predicate symbols could be
very critical for this approach.

In contrast, in a more conventional verification approach based on au-
tomatic theorem proving, generation and verification of a single and small
assertion could be better in spite of auxiliary uniterpreted predicate symbols.
In particular, the idea of theorem 1 comes from the project Spectrum-II that
is oriented on verification of C#-programs [10]. In this project, the auxil-
iary uniterpreted predicate symbols are called ‘lazy invariants’ and they are
extensively used in translation of C#-programs from C#-light to C#-kernel
levels17.

17Both C#-light and C#-kernel are subsets of C#. More precisely, C#-kernel includes
additionally metainstructions which handle directly the virtual machine for the C#-light
language.

60 I.S. Anureev, E.V. Bodin, N.V. Shilov

References

[1] Anureev I.S., Bodin E.V., Shilov N.V. Complexity of Axiomatic Seman-
tics Verification Conditions for mini-Pascal. — Manuscript, available upon
demand by email.

[2] Barnett M., Leino K. R. M. Weakest-Precondition of Unstructured Pro-
grams // Proc. of Workshop on Program Analysis For Software Tools and
Engineering (PASTE). — 2005. — P. 82–87.

[3] Bodin E., Kalinina N., Shilov N. Verifying Compiler F@BOOL@ Part I:
Outlines of F@BOOL@ project in the context of component-based program-
ming. Mini-NIL: a prototype of F@BOOL@ virtual machine language. —
Novosibirsk, 2005. — (Prepr. / IIS SB RAS; N 131).

[4] Bodin E., Kalinina N., Shilov N. Verifying Compiler F@BOOL@ Part II: Log-
ical annotations in mini-NIL, their static and run-time semantics. — Novosi-
birsk, 2006. — (Prepr. / IIS SB RAS; N 138).

[5] Dijkstra W.E. The Dicsipline of programming. — Prentice Hall, 1976.

[6] Flanagan C., Saxe J.B. Avoiding Exponential Explosion: Generating Com-
pact Verification Conditions // The 28th ACM SIGPLAN-SIGACT Symp.
on Principles of Programming Languages. — 2001. — P. 193–205.

[7] Floyd R.W. Assigning Meanings to Programs // Proc. of a Symposium in
Applied Mathematics. Mathematical Aspects of Computer Science. Vol. 19.
— Providence, R. I.: American Math. Society, 1967. — P. 19-32.

[8] Hoare, C.A.R. and Wirth N. An Axiomatic Definition of the Programming
Language PASCAL // Acta Informatica. — 1973. — N 2. — P. 335–355.

[9] Hoare C. A. R. The Verifying Compiler: A Grand Challenge for Computing
Research // Proc. of PSI’2003. — Lect. Notes in Comput. Sci. — 2003. —
Vol. 2890. — P. 1–12.

[10] Nepomniaschy V.A., Anureev I.S., Dubranovskii, I.V. Promsky A.V. To-
wards Verification of C# Programs: A Three-Level Approach // Program-
ming and Computer Software. — 2006. — Vol. 32(4). — P. 190–202.

A. Proof of Lemma 1

Let us discuss the assignment case only. Any contract-free path π that starts
at k and goes to a contract point without visiting any other contract point
matches the following pattern:

k → x := τ → π′

where π′ is a contract-free path that starts from some label l ∈ L. Hence
wpk can be represented as a conjunction of the following two formulas:

Effective generation of verification conditions 61

∧

l ∈ L,
l is a contract point

wp(x := τ, φl))

∧

l ∈ L,
l is not a contract point

(
∧

l′ is a contract point,

π′ is a non-empty contract-

free path from lto l′

wp((x := τ ; mP (π′)) , φl′)).

The first formula can be processed directly as follows:
∧

l ∈ L,
l is a contract point

wp(x := τ, φl)) ⇔
∧

l ∈ L,
l is a contract point

rewp(x := τ, φl)) ⇔

⇔
∧

l ∈ L,
l is a contract point

∃y.(y = τ ∧ (φl)y/x)) ⇔

⇔ ∃y.(y = τ ∧
∧

l ∈ L,
l is a contract point

(φl)y/x).

For the internal conjunction of the second formula we have:
∧

l′ is a contract point,

π′ is a non-empty contract-

free path from lto l′

wp((x := τ ; mP (π′)) , φl′) ⇔ 18

⇔
∧

l′ is a contract point,

π′ is a non-empty contract-

free path from lto l′

wp(x := τ, wp(mP (π′) , φl′)) ⇔ 19

⇔
∧

l′ is a contract point,

π′ is a non-empty contract-

free path from lto l′

rewp(x := τ, wp(mP (π′) , φl′)) ⇔ 20

18by definition of wp for sequential composition
19since wp is equivalent to rewp
20by definition of rewp

62 I.S. Anureev, E.V. Bodin, N.V. Shilov

⇔
∧

l′ is a contract point,

π′ is a non-empty contract-

free path from lto l′

∃y.(y = τ ∧ (wp(mP (π′) , φl′))y/x) ⇔

⇔ ∃y.(y = τ ∧
∧

l′ is a contract point,

π′ is a non-empty contract-

free path from lto l′

(wp(mP (π′) , φl′))y/x) ⇔

⇔ ∃y.(y = τ ∧ (
∧

l′ is a contract point,

π′ is a non-empty contract-

free path from lto l′

wp(mP (π′) , φl′))y/x) ⇔ 21

⇔ ∃y.(y = τ ∧ (wpl)y/x).

This finishes the proof of Lemma 1.

B. Proof of Lemma 2

Let P be an annotated program. By Lemma 1, the system of verification
equations for P has a solution I(θk(var)) = wpk for every label k. Let us
prove that this solution is unique.

Let us define the following binary relation R on labels within P : for any
labels k and l, kRl iff k = l, or l is not a contract point and there exists a
contract-free path from k to l in the control-passing graph. Reflexivity and
transitivity of the relation R is obvious. Antisymmetry of R can be proved
by contradiction: if kRl and lRk hold for non-equal labels k and l, then both
labels are not contract points, and there exists a cycle in the control-passing
graph without any contract point. This contradicts the assumption that P
is an annotated program. Hence R is a partial order.

Let us sort topologically all labels within P in accordance with this
partial order R. Then the set of all labels within P can be partitioned as
follows:

• let the layer L0 comprise all minimal elements;

• for every i ≥ 0 let the layer Li+1 comprise all elements that have
predecessors at the layers L0, ... Li.

By this definition of R-layers,

21by definition of assertion wpl

Effective generation of verification conditions 63

• for any label in L0, all its successors via ‘goto’, ‘then’ or ‘else’ are
contract points;

• for every i ≥ 0, for any label in Li+1 , all its successors via ‘goto’,
‘then’ or ‘else’ are either contract points or labels at the layers L0, ...
Li.

The partial order R induces a partial order on uninterpreted symbols θ...

within the system of verification equations: for any θk and θl, θkRθl iff kRl
holds for labels.

Observe that all equations in the system of verification equations have
the following form ‘θk ↔ B({θ′l : l ∈ L})’, where L is the set of all labels
that are ‘goto’-, ‘then’- or ‘else’ direct successors of k, and B({θ′l : l ∈ L}) is
a first-order combination of variables {θl : l ∈ L, l is not a contract point}
and assertions {φl : l ∈ L, l is a contract point}. Due to this we can sort
topologically all equations in accordance with the partial order R on left-
hand sides of equations.

After this sorting, all equations are partitioned in accordance with the
layers L0, L1, ... so that

• for any equation θk ↔ B(. . .) in L0, its right-hand side B(. . .) is a
first-order combination of some assertions {φl : l is a contract point};

• for every i ≥ 0, for any equation θk ↔ B(. . .) in Li+1, its right-hand
side B(. . .) is a first-order combination of some variables {θl : l ∈
Lj , 0 ≤ j ≤ i} and some assertions {φl : l is a contract point}.

Let I be any solution of the system, i.e. I |= ∀var.(
∧

kis a labell in P EQk).
Observe that, for every equation θk ↔ B({θ′l : l ∈ L}) within this system,
I(θk) = B({I(θ′l) : l ∈ L}), where B is a predicate transformer that corre-
sponds to the first-order combination B. Hence, due to the partial order R,
that layered all equations, and Lemma 1, for evey i ≥ 0, for every k ∈ Li,
we have I(θk) = wpk. That is we have proved uniqueness of the solution I
and finished the proof of Lemma 2.

64

