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Inverse problems of plane wave scattering by
1D inhomogeneous layers

A.S. Alekseev, A.G. Megrabov

Abstract. Inverse problems of the plane waves scattering of inclined incidence of
the SH type by an inhomogeneous half-space (in particular, by a transition layer) or
by an inhomogeneous layer with a free boundary are considered. The characteristics
of an inhomogeneous elastic medium, i.e., the wave propagation velocity v(z) and
the density ρ(z), are functions of depth z and should be determined in the inverse
problems. The following are considered: the inverse problems with data for a fixed
angle of incidence θ0 of a plane wave (the angle between the vector of the normal
to the plane wave front and z-axis) when the shape ϕ0(ξ, θ0) of an incident wave
is known; the inverse problems with data for a family of angles θ0 both for known
and unknown shapes of the incident wave. The functions ϕ0(ξ, θ0) and ϕ1(ξ, θ0)
(the shapes of incident and reflected waves), the functions ϕ0(ξ, θ0) and u(H, ξ, θ0)
(the shapes of the incident wave and the free boundary oscillation field), only the
function u(H, ξ, θ0) (in the inverse problem with the unknown function ϕ0(ξ, θ0)),
or other data are given as data corresponding to any fixed value of θ0. Possible
application areas of the inverse problems under consideration are specified.

This paper is essentially a review. A new result presented here has been
obtained for inverse problems with the data

{
ϕ0(ξ, θ0), ϕ1(ξ, θ0)

}
or

{
ϕ(ξ, θ0),

u(H, ξ, θ0)
}

for a set of angles θ0. The results [9] (the uniqueness theorem, the
solution method) are extended to the case when the limiting point θ̄0 of this set is
zero. Also, a new explicit formula (formula (17) from Section 5), which makes it
possible to find the functions v(z) and ρ(z) using the data of these inverse problems
for θ̄0 = 0, has been obtained.

1. Introduction

The inverse problems of plane wave scattering by inhomogeneous layers be-
long to inverse dynamic problems of wave propagation theory [1, 2]. They
consist, first of all, in determining the characteristics of an inhomogeneous
elastic medium filling the layer (the wave propagation velocity v(z) and the
density ρ(z) as functions of depth z). This is done with the information
about the oscillation field (measured by devices or obtained by solving the
direct problem) at some point located outside the layer or at one of its
boundaries. An inhomogeneous layer can be both a transition one (an in-
homogeneous half-space) and the one with a free or a fixed boundary. In
both cases, a plane wave of the shape ϕ0(ξ, θ0) is incident at an angle θ0

from a homogeneous half-space with characteristics v0 and ρ0 on the inho-
mogeneous layer (half-space). This plane wave generates a reflected wave of
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the shape ϕ1(ξ, θ0) in the homogeneous half-space and an oscillation field
u(z, ξ, θ0) in the inhomogeneous layer.

Papers [3–12] have shown that the statements of these inverse problems
can be rather manifold. This is caused, first, by the fact that in the inverse
problems one can specify information of different character and volume. If
the shape ϕ0(ξ, θ0) is known, then as initial data one can specify either the
reflected wave shape ϕ1(ξ, θ0) or the oscillation field u of a fixed medium
point at one of the boundaries, for instance, at the free boundary [3–7, 9–12].
In other statements [8], the shape ϕ0(ξ, θ0) of the incident wave is unknown
and subject to determination as well as the medium’s characteristics v(z)
and ρ(z). The above-mentioned initial data can be specified both for one
fixed value of the parameter θ0 (the angle of incidence) [3–7, 10–12] and for
a set of angles θ0 [8, 9].

Second, as shown in [3], depending on the angle of incidence θ0 and the
characteristics v0 and v(z) of a medium, a differential equation in a reduced
(to a less number of independent variables) problem of the form

∂u2

∂z2
+

d

dz
{lnµ(z)}∂u

∂z
=

{
1

v2(z)
− sin2 θ0

v2
0

}
∂2u

∂ξ2
(1)

can be of different types: hyperbolic, elliptic, and mixed depending on the
sign of the coefficient in the right-hand side. The variable ξ has the dimen-
sionality of the time t, and if θ0 = 0 (normal incidence) coincides with t. In
the general case of arbitrary θ0, ξ = t−x sin θ0/v0, where x is the “horizon-
tal” spatial variable.

The case of inclined incidence of a plane wave and inverse problems,
where the information about the field is specified for a series of angles θ0,
should be investigated for the following reason. Let us consider a well-
known case of normal incidence (θ0 = 0) [1, 2, 13–17], from which the
investigation of the inverse problems of plane wave scattering started. In the
inverse problem, neither the functions v(z) or ρ(z), but only some auxiliary
intermediate function σ0(x) is uniquely reconstructed. This intermediate
function is obtained from the function σ0(z) = ρ(z)v(z) (acoustic stiffness)
by the substitution of variables,

x =
∫ z

0

dz

v(z)
, σ0(x) = σ0(z). (2)

Thus, using the information specified in the inverse problem for the case
θ0 = 0, we can determine only the acoustic stiffness σ0(x) as function of the
wave travel time x along the section [0, z]. The travel time x(z) and the
properties ρ(z) and v(z) as functions of depth remain unknown.
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In this connection, the following questions are of interest:

1. A more complete determination of elastic properties of the inhomoge-
neous layer, for example, the functions v(z) and ρ(z);

2. Investigation of the general case of an arbitrary inclined incidence of
the plane wave.

A series of papers [3–12] concern the solution to these two problems for
the case when the incident wave is an elastic transverse wave of the SH type.
Let us clarify the origin of equation (1). The initial Lamé system of equations
of elasticity theory is reduced for SH waves to a scalar wave equation with
independent variables x, z, and t. In turn, this wave equation can be reduced
to an equation of the form of (1) with two independent variables z and
ξ = t − x sin θ0/v0. The results of these papers are summarized in [23, 24]
and [25].

In the case that v(z) < v0/ sin θ0 (the velocity in the inhomogeneous
layer is smaller than the apparent velocity, that is, the angle of incidence
is subcritical), differential equation (1) in the reduced problem is of the
hyperbolic type, being a string equation with the velocity depending on
the parameter θ0. This (hyperbolic) case is an analog to the case of su-
personic gas flows in gas dynamics. The above-mentioned case of normal
incidence of a plane wave (θ0 = 0) is a hyperbolic one. The hyperbolic
case belongs to such a well-developed direction in the theory of inverse
problems as those inverse problems for the Sturm–Liouville equation, the
string equation and for hyperbolic equations. These are publications by
V.A. Marchenko, M.G. Krein, I.M. Gelfand–B.M. Levitan, A.S. Alekseev,
M.M. Lavrentiev, V.G. Romanov, A.S. Blagoveshchenskii, S.I. Kabanikhin,
and their co-workers. Bibliography for this direction can be found in [1, 2,
18–26].

At inclined incidence (θ0 6= 0), in the hyperbolic case only some auxil-
iary intermediate function σ(x, θ0) is uniquely reconstructed (as shown in
[3, 4, 6]) with the use of the information given for one fixed angle θ0. This
function coincides with the function σ0(x) at θ0 = 0. The functions v(z)
and ρ(z) are not determined in the general case [3, 4, 6] (these results were
formulated in Section 3). Therefore, inverse problems of the plane wave
scattering with a greater volume of information for a set of different an-
gles θ0 were stated in [8, 9]. In [8, 9], the sequence Θ0 of the angles θ0

with a limiting point was taken as a set providing the uniqueness of de-
termination of v(z) and ρ(z). The set of functions

{
ϕ0(ξ, θ0), ϕ1(ξ, θ0)

}
(or

{
ϕ(ξ, θ0), u(H, ξ, θ0)

}
, or {u(H, ξ, θ0)}, or other information) for any

θ0 ∈ Θ0 serves as initial data in the inverse problem. Such inverse problems
were formulated in Section 4. In [9], an explicit formula, which makes it pos-
sible to calculate the function v(z) in terms of the function σ(x, θ0) and its
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first-order partial derivatives with respect to x and θ0, was obtained. This
formula (formula (16)) is given in Section 5. A method and a numerical
algorithm to reconstruct v(z) and ρ(z) as functions of the depth z, based on
this explicit formula, are proposed in [9]. A family of plane waves incident
to the inhomogeneous layer and reflected from it at different angles θ0 is
used in the reconstruction. The results of numerical experiments with this
algorithm (for the transition layer) are also considered and analyzed there.
This method is briefly described in Sections 6 and 7.

It should be noted that when a difference analog of the above-mentioned
explicit formula is used in the numerical solution, it is sufficient to specify
the information {ϕ0(ξ, θ0), ϕ1(ξ, θ0)} or other data that provide the unique-
ness of determining the function σ(x) = σ(x, θ0) at a fixed θ0, for instance,
the function {ϕ0(ξ, θ0), u(H, ξ, θ0)} (u(H, ξ, θ0) is the field of displacements
on the free boundary z = H), only for two or three angles θ0 [9, 23, 25].
Therefore, one of the authors of this paper suggested that for the uniqueness
of the solution to the inverse problem of determining the medium character-
istics v(z) and ρ(z) it is sufficient to know the function σ(x, θ0) (that is, the
data of the inverse problem with a fixed angle) for two different angles θ0.

Such an inverse problem was formulated and offered to V.A. Gorbunov
for further investigation. It turned out that the functions v(z) and ρ(z)
are actually determined uniquely with the use of the functions σ(x, θ1

0) and
σ(x, θ2

0) (and hence, with a set {ϕ0(ξ, θ0), ϕ1(ξ, θ0)} or other information
that provides the uniqueness of determining the function σ(x, θ0) at a fixed
θ0 given for two different angles, θ1

0 and θ2
0). This result was obtained for

the analytical functions v(z) by V.I. Dobrinsky and V.A. Gorbunov in [26].
Statements of inverse problems for an inhomogeneous layer with a free

(or fixed) boundary, where the shape ϕ0(ξ, θ0) of the incident wave and the
characteristics v(z) and ρ(z) are unknown and reconstructed in solution to
inverse problems are considered in [8]. In this case, certain restriction is
imposed on the Fourier transform of the function ϕ0(ξ, θ0). Also, we make
use of analytic features of some functions with respect to the parameter θ0

in terms of which the solution u(z, ξ, θ0) to the direct problem is expressed.
These results are briefly described in Section 8.

An inverse problem of the plane wave scattering with a hyperbolic equa-
tion of the general form that generalizes the wave equation considered in
[3–12] is studied by A.S. Blagoveshchensky and K.E. Voyevodsky in [27].

Inverse problems of the plane wave scattering by an inhomogeneous layer
with a free boundary in the hyperbolic case when the medium characteristics
v and ρ are assumed to be continuous at the contact of the inhomogeneous
layer with the homogeneous half-space were investigated by A.S. Alekseev
and V.S. Belonosov [28, 29]. In this case, the equivalence of different state-
ments of the inverse problems of the plane wave scattering was established.
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The case v(z) > v0/ sin θ0 (the velocity in the inhomogeneous layer is
higher than the apparent velocity, that is, the angle of incidence is super-
critical) corresponds to the elliptic type equation (of the form (1)) in the
reduced problem. The direct and inverse problems corresponding to this
(elliptic) case are considered in [7–10, 23, 25]. The hyperbolic case general-
izes the problem of normal incidence. The elliptic case qualitatively differs
from the hyperbolic one, and corresponds to total internal reflection. It is
an analog to the case of subsonic flows in gas dynamics.

The direct and the inverse problems of the plane wave scattering by
inhomogeneous layers for the case of the function with an alternating sign
{v(z)−sin θ0/v0} (the mixed case) corresponding to the mixed-type equation
of form (1) in the reduced problem were first considered in [11, 12]. Further
results for this case were obtained by M.I. Belishev [30]. The mixed case
is an analog to the case of transonic flows in gas dynamics. The mixed-
type equation that corresponds to equation (1) is known in gas dynamics as
the Chaplygin equation for the stream function, as noted in [24]. However,
direct problems, and, besides, for a limited domain of a special kind (such
as Trikomi, Frankl, and other problems), have been conventionally studied
in gas dynamics and theory of mixed type equations.

In all the above-mentioned works dealt with inverse problems of the
plane wave scattering, except for [8], the shape ϕ0(ξ, θ0) of the incident
wave is assumed to be known. It should be noted that the 1D inverse
problem for the string equation (when the velocity v(z) does not depend
on the parameter) with an unknown source of the form f(t) was investi-
gated by M.L. Gerver [31]. In this case, the uniqueness of the solution to
the inverse problem is provided by the following condition for the Fourier
transform f̃(k) of the function f(t): the totality of squares of all zeroes of
f̃(k) and the spectrum of the corresponding boundary problem must not
intersect. A.S. Blagoveshchensky [32] considers an inverse problem for the
wave equation with an unknown source where two moments of the function
u|z=0 = f(x, t) are specified (u is the solution to the direct problem) with

the “horizontal” variable x of the form
∫ ∞

−∞
f(x, t) dx and

∫ ∞

−∞
x2f(x, t) dx.

In this paper, the results of [9] (the uniqueness theorem, the solution
method) for inverse problems with the information {ϕ0(ξ, θ0), ϕ1(ξ, θ0)} or
{ϕ0(ξ, θ0), u(H, ξ, θ0)} given for the set Θ0 of the angles θ0 are extended to
the case when the limiting point θ̄0 of the set Θ0 of angles can be a point
θ0 = 0. Also, a new explicit formula (formula (17) in Section 5) has been
obtained. This formula makes it possible to find the functions v(z) and ρ(z)
using the data of these inverse problems in the case that θ̄0 = 0. (In the case
that θ̄0 6= 0, a similar formula (formula (16)) was obtained in [9]). Possible
application areas of the inverse problems under discussion are considered in
Section 9.
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2. Direct problems

The consideration below is constructed so that it simultaneously covers both
the case of a scattering inhomogeneous half-space and the case of a scatter-
ing inhomogeneous layer with a free boundary. In [3, 4], it is shown that
the problem for the inhomogeneous half-space is reduced in the variables z
and ξ to the problem for the half-plane 0 ≤ z < ∞, −∞ < ξ < ∞; this
problem will be called the HS (“half-space”) problem. The problem of an
inhomogeneous layer with a free boundary, as shown in [6], is reduced to the
problem in the band 0 ≤ z ≤ H, −∞ < ξ < ∞; this problem will be called
the FB (“free boundary”) problem.

Let D denote a domain on the plane z, ξ of one of the two kinds: the
half-plane 0 < z < ∞, −∞ < ξ < ∞ in the HS problem and the band
0 < z < H, −∞ < ξ < ∞ in the FB problem.

Direct HS and FB problems. Let there be given the equation of the
hyperbolic type

∂2u

∂z2
+

d

dz
{lnµ(z)}∂u

∂z
=

1
v̄2(z, θ0)

∂2u

∂ξ2
, (z, ξ) ∈ D (3)

in the domain D, where

1
v̄2(z, θ0)

=
1

v2(z)
− sin2 θ0

v2
0

; (4)

the boundary condition with an inclined derivative

∂u

∂z
(0, ξ, θ0)− κ(θ0)

∂u

∂ξ
(0, ξ, θ0) = ν(θ0)

∂ϕ0(ξ, θ0)
∂ξ

(5)

at z = 0, −∞ < ξ < ∞, where

κ(θ0) =
δ(θ0)
µ(0)

, δ(θ0) = σ0 cos θ0, σ0 =
µ0

v0
, ν(θ0) = −2κ(θ0); (6)

and the initial condition

u(z, ξ, θ0)
∣∣
ξ<0

≡ 0, z ≥ 0. (7)

Conditions (3)–(7) are specified in both HS and FB problems.



Inverse problems of plane wave scattering by 1D inhomogeneous layers 21

In addition, the following boundary condition is specified in the FB prob-
lem:

∂u

∂z

∣∣∣
z=H

= 0, −∞ < ξ < ∞. (8)

The constants v0, µ0 and the functions v(z) and µ(z) are strictly posi-
tive; Any of the conditions (v(0) = v0, v(0) 6= v0, µ(0) = µ0, or µ(0) 6= µ0)
is allowed. That is, a discontinuity of the characteristics v and µ of the
medium at the interface z = 0 of the inhomogeneous layer and the homo-
geneous half-space is allowed. (The interface z = 0 is assumed to be rigid,
i.e., displacements and stresses are continuous when passing through the
boundary z = 0; hence, conditions (5) and (9) follow.) The function ϕ0 can
depend on θ0: ϕ0 = ϕ0(ξ, θ0) and has the property ϕ0(ξ, θ0)|ξ<0 = 0.

Let the numbers θ0, v0, and µ0 and the functions v(z), µ(z), and ϕ0(ξ, θ0)
be given. It is necessary to find the function u(z, ξ, θ0) satisfying conditions
(3)–(7) in the HS problem and conditions (3)–(8) in the FB problem. This
problem is called the direct HS or FB problem, respectively.

It is shown in [3, 4, 6] that the problem of the plane waves scattering
of inclined incidence of the SH type by an inhomogeneous elastic half-space
(and by an inhomogeneous layer with a free boundary) is reduced to the HS
problem with conditions (3)–(7) (and to the FB problem with conditions
(3)–(8)) in the following case:

v(z) < v0/ sin θ0, z ≥ 0. (H)

We call this case hyperbolic. Here v(z) and µ(z) are the wave propagation
velocity and the shear modulus in the inhomogeneous medium–half-space
z ≥ 0 or the layer 0 ≤ z ≤ H, and v0 and µ0 are the wave propaga-
tion velocity and shear modulus in the homogeneous half-space z < 0 from
which a plane wave of the shape ϕ0(ξ, θ0) (−∞ < ξ < ∞) is incident;
θ0 (0 ≤ θ0 < π/2) is its angle of incidence; u(z, ξ, θ0) = u(x, z, t, θ0), where
u(x, z, t, θ0), is the full field of displacements in the half–space z ≥ 0 or in
the layer 0 ≤ z ≤ H; ξ = t− x sin θ0/v0; t is the physical time, and x and z
are the spatial variables. The condition (H) is always satisfied at sufficiently
small angles θ0; in particular, at θ0 = 0 (the normal incidence). With SH-
waves the vector of displacements ū is perpendicular to the normal to the
incident wave front and parallel to the boundary z = 0 between the inho-
mogeneous medium and homogeneous half-space (Figures 1 and 2). That
is, it is directed along the axis Oy. The choice of a system of coordinates x,
z, t is clear from Figure 1.

The shape ϕ1(ξ, θ0) of the plane wave reflected from the inhomogeneous
half-space is unknown and must be determined both in the direct HS and FB
problem. The function ϕ1(ξ, θ0) is associated with the solution u(z, ξ, θ0) to
the direct HS and FB problem by the boundary condition
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Figure 1. The problem of the plane waves scattering on an inhomogeneous elastic
half-space (in particular, on the transition layer) in the coordinates x, z, t

Figure 2. The problem of the plane waves scattering on an inhomogeneous layer
with a free or fixed boundary in the coordinates x, z, t
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u(0, ξ, θ0) = ϕ0(ξ, θ0) + ϕ1(ξ, θ0). (9)

The following equalities are valid:

ρ(z) = µ(z)/v2(z), σ0(z) = ρ(z)v(z),

where ρ(z) is the density and σ0(z) is the acoustic stiffness of the medium.
Uniqueness theorems were proved for the direct HS problem in [4] and

for the direct FB problem in [6].

3. Inverse problems 1 (with a fixed value of θ0)

Inverse 1HS and 1FB problems. Let the functions ϕ0(ξ, θ0) and
ϕ1(ξ, θ0) (the shapes of the incident and reflected waves) be specified at
0 ≤ ξ < ∞ and at some fixed (generally speaking, unknown) value θ0 ∈
[0, π/2) satisfying the condition (H) in the inverse 1HS problem. Also, let
the functions ϕ0(ξ, θ0), ϕ1(ξ, θ0) or ϕ0(ξ, θ0), u(H, ξ, θ0) (the incident wave
shapes and oscillations of the free boundary z = H) be given in the inverse
1FB problem. Thus, two variants of specifying information in the inverse
1FB problem are possible. The function ϕ1(ξ, θ0) is associated, by condition
(9), with the solution u(z, ξ, θ0) to the direct HS or FB problem with some
unknown (at 0 ≤ z < ∞ or 0 ≤ z ≤ H, respectively) functions v(z) and
µ(z) and the unknown numbers θ0, v0, and µ0. The number δ = σ0 cos θ0,
where σ0 = µ0/v0, is also specified. To know the number δ, it is sufficient,
for instance, to specify the numbers v∗ = v0/ sin θ0 and µ0 (v∗ is the front
velocity along the boundary z = 0 or z = H). We shall obtain such infor-
mation about the functions ϕ0(ξ, θ0), ϕ1(ξ, θ0), or u(H, ξ, θ0) if we measure
the incident and the reflected waves as functions of time t ∈ (−∞,∞) at
some fixed point (x0, y0, z0) of the domain z ≤ 0 or the field of oscillations
as a function t at a fixed point (x0, y0,H) of the free boundary. These data
will be called the data of the inverse 1HS and 1FB problem, respectively;
they relate to a fixed value of the parameter θ0.

It is necessary to determine, in the general case, the function σ(x) =
σ(x, θ0) for the considered fixed θ0 at 0 ≤ x < ∞ in the inverse 1HS problem
and at 0 ≤ x ≤ xH in the inverse 1FB problem. The number xH in the 1FB
problem must also be determined. By definition, the function σ(x, θ0) is
obtained from the function

σ(z, θ0) =
µ(z)

v̄(z, θ0)
(10)

by changing the variables

x =
∫ z

0

dz

v̄(z, θ0)
≡ x(z, θ0) ⇒ z =

∫ x

0
v̄(x, θ0) dx ≡ z(x, θ0), (11)
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σ(x, θ0) = σ(z, θ0) ⇒ σ(z, θ0) ≡ σ(x(z, θ0), θ0). (12)

In this case (by definition) xH = x(H, θ0),

v̄(x, θ0) = v̄(z, θ0), µ(x, θ0) = µ(z) (13)

(the symbols of the functions σ, v̄, and µ are retained), so that

σ(x, θ0) =
µ(x, θ0)
v̄(x, θ0)

. (14)

In particular cases, the statement of the inverse 1HS and 1FB problems
changes in the following way. Let Z denote the interval 0 ≤ z < ∞ in the
HS problem and the interval 0 ≤ z ≤ H in the FB problem. Let the data
of the functions ϕ0(ξ, θ0), ϕ1(ξ, θ0), and u(H, ξ, θ0) in the inverse 1HS and
1FB problems be the same as in the general case, and let the number δ be
specified.

If µ(z) = const = µ and the numbers µ and v∗ are specified, it is nec-
essary to find the function v(z) at z ∈ Z and, in addition, the number H
(the layer thickness) in the inverse 1FB problem. If the number v∗ and the
function v(z) at z ∈ Z are specified, it is necessary to find the function µ(z)
at z ∈ Z.

The inverse 1HS problem was formulated and investigated in [4], and the
inverse 1FB problem –– in [6]. With the help of the representation for the
solution u(z, ξ, θ0) to the direct HS and FB problems obtained in these pa-
pers, the inverse 1HS and 1FB problems are reduced to the inverse problem
of determining the regular Sturm–Liouville operator by the spectral func-
tion and two spectra, respectively. Combining the uniqueness theorems for
solving the inverse problems proved in [4, 6] in one statement, we come to

Theorem 1. Let us denote

B(x) =
1
2

∂

∂x
{lnσ(x, θ0)}, q(x) =

∂B

∂x
+ B2(x).

Let the following conditions (in both inverse 1HS and 1FB problems) be
satisfied :

(A) the derivatives d2v/dz2 and d2µ/dz2 are continuous at z ∈ Z;

(B) at a given θ0 the function ϕ0(ξ, θ0) and its derivatives with respect to
ξ up to fourth order are continuous and absolutely integrable in the
straight line −∞ < ξ < ∞.

Also, let the condition

(C)
∫ ∞

0
x|q(x)| dx < ∞,

∫ ∞

0
B2 dx < ∞,

∫ ∞

0
|B| dx < ∞,
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be satisfied in the inverse 1HS problem, and the condition

(D)
∂σ(z, θ0)

∂z

∣∣∣
z=H

= 0

be satisfied in the inverse 1FB problem.
Then the inverse 1HS problem has the unique solution σ(x, θ0), and the

inverse problem 1FB has the unique solution {σ(x, θ0), xH} (in the particular
cases formulated, the solution v(z) or µ(z)).

Condition (C) is satisfied, for instance, for the functions v(z) and µ(z),
which are constant outside some finite interval [0,H] that physically corre-
sponds to the transition layer with the variable velocity v(z) and the density
ρ(z). Condition (D) is satisfied, for instance, if we have dv/dz = dµ/dz = 0
at the point z = H. It follows from conditions (A) and (C) that the functions
v(z), µ(z), and ρ(z) can be non-monotone.

Remark 1. In the inverse 1HS problem, the number σ(0, θ0), and in the
inverse problem 1FB, any number (σ(0, θ0) or σ(H, θ0)) can be given instead
of the number δ. In all cases (the general case and particular ones), in both
inverse problems ( 1HS and 1FB), the number δ = cos θ0µ0/v0 must be
found and is determined uniquely if it is not specified.

A numerical algorithm to reconstruct the function σ(x, θ0) in the inverse
1HS problem both when the function ϕ1(ξ, θ0) is specified precisely and in
the presence of noise (at different angles θ0) was proposed and tested in [9].

It should be noted that the function σ(x, θ0) depends on θ0 for the fol-
lowing two reasons: 1) σ(z, θ0) depends on θ0; and 2) x(z, θ0) depends on θ0.
At different θ

(1)
0 and θ

(2)
0 , the functions σ(x, θ

(1)
0 ) and σ(x, θ

(2)
0 ), as shown by

the calculations in [9], can essentially differ for the same pair of functions,
v(z) and µ(z). Notice also that at θ0 = 0, the function σ(x, θ0) coincides
with the function σ0(x) (determined by equalities (2)) from the problem of
normal incidence of the plane wave: σ(x, 0) = σ0(x). Thus, in the general
case in inverse problems 1, only the intermediate function σ(x, θ0) is deter-
mined from the data {ϕ0(ξ, θ0), ϕ1(ξ, θ0)} or {ϕ0(ξ, θ0), u(H, ξ, θ0)} for one
value of θ0. The functions v(z), µ(z) (and ρ(z)) are not determined. In
order to determine them, let us formulate other inverse problems, where the
volume of specified information is greater than in inverse problems 1.

4. Inverse problems 2 (with data for the family of angles θ0

and the known function ϕ0(ξ, θ0))

In contrast to inverse problems 1, where formula (4) for the function v̄(z, θ0)
does not play any role, in inverse problems 2 the dependence of the functions
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v̄(z, θ0) and σ(z, θ0) on θ0 of forms (4) and (10) is essentially used, which
takes place in the problem with plane waves.

Inverse 2HS and 2FB problems. Let Θ0 denote an infinite monotone
decreasing (or increasing) sequence of real numbers θ

(1)
0 , θ

(2)
0 , . . . , θ

(n)
0 , . . .

such that

1) each θ
(n)
0 ∈ Θ0 belongs to the interval [0, π/2) and satisfies the condi-

tion (H);

2) the sequence Θ0 converges to some limit point θ̄0: limn→∞ θ
(n)
0 = θ̄0,

θ̄0 ∈ [0, π/2), and the condition (H) is satisfied at θ0 = θ̄0.

Let the following be specified at 0 ≤ ξ < ∞ and for any θ0 ∈ Θ0: the
functions ϕ0(ξ, θ0) and ϕ1(ξ, θ0) (the shapes of incident and reflected waves)
in the inverse 2HS problem, and either the functions ϕ0(ξ, θ0), ϕ1(ξ, θ0), or
the functions ϕ0(ξ, θ0), u(H, ξ, θ0) (where u(z, ξ, θ0) is the solution to the
direct FB problem) in the inverse problem 2FB. Moreover, it is known to
which value of θ0 ∈ Θ0 the functions ϕ0(ξ, θ0) and ϕ1(ξ, θ0) or ϕ0(ξ, θ0)
and u(H, ξ, θ0) correspond. The function ϕ1(ξ, θ0) is associated with the
solution u(z, ξ, θ0) to the direct HS or FB problems, respectively, by the
condition (9). The functions v(z) and µ(z) are unknown at 0 ≤ z < ∞ in
the inverse problem 2HS and at 0 ≤ z ≤ H in the inverse 2FB problem,
in which the number H is also unknown. The numbers v0 and µ0 in both
inverse problems, 2HS and 2FB, are also specified. Thus, data for the inverse
problem 1HS or 1FB for any θ0 ∈ Θ0 are specified.

It is necessary to determine the functions v(z) and µ(z) at 0 ≤ z < ∞ or
at 0 ≤ z ≤ H in the inverse 2HS or 2FB problem, respectively. Moreover,
the number H must be determined in the inverse 2FB problem.

Inverse problems 2 are formulated in [9] (see also [23, 25]), where the
uniqueness theorem is proved and a method to solve them for the case θ̄0 6= 0
is proposed. A similar theorem proved in [9] is generalized in the theorem
given below in that any of the conditions (θ̄0 6= 0 or θ̄0 = 0) is allowed.

Theorem 2. Let condition (A) of Theorem 1 be satisfied, and let the func-
tion ϕ0(ξ, θ0) at any fixed θ0 ∈ Θ0 satisfy condition (B) of Theorem 1. In
addition, let, for any θ0 ∈ Θ0, condition (C) of Theorem 1 be satisfied in the
inverse 2HS problem, and let its condition (D) be satisfied for the inverse
2FB problem. That is, let the conditions of Theorem 1 for any θ0 ∈ Θ0 be
satisfied.

Then the inverse 2HS problem has the unique solution {v(z), µ(z)}, and
the inverse problem 2FB has the unique solution {v(z), µ(z),H}.
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Let us prove Theorem 2 and give a method to solve inverse problem 2,
according to the method described in [9]. As in [9], the explicit formulas
that express the function v̄(x, θ0) in terms of the function σ(x, θ0) and its
partial derivatives with respect to x and θ0 play an important role in this
case.

5. The main identities relating the functions v̄(x, θ0),
σ(x, θ0) and partial derivatives of the function σ(x, θ0) to
variables x and θ0

Lemma 1. Let v(z) and µ(z) be continuously differentiable functions, con-
dition (H) be satisfied, and the functions v̄(x, θ0) and σ(x, θ0) be determined
by formulas (4) and (10)–(13). Let us denote

α = α(θ0) = −sin θ0 cos θ0

v2
0

.

Then the following identities are valid :

α(θ0)v̄2(x, θ0) =
∂

∂x
{lnσ(x, θ0)} · α(θ0)

∫ x

0
v̄2(ξ, θ0) dξ +

∂

∂θ0
{lnσ(x, θ0)}

∀θ0 ≥ 0 ∀x ≥ 0. (15)

This formula can be considered as representation of the derivative
∂{lnσ(x, θ0)}/∂θ0 in terms of the derivative ∂{lnσ(x, θ0)}/∂x and the func-
tion v̄(x, θ0) at any θ0;

v̄2(x, θ0) =
1

α(θ0)

{
∂

∂θ0
{lnσ(x, θ0)}+

∂σ(x, θ0)
∂x

∫ x

0

∂{lnσ(ξ, θ0)}/∂θ0

σ(ξ, θ0)
dξ

}
θ0 6= 0 ∀x ≥ 0, (16)

Formula (16) expresses, in the explicit form, at any θ0 6= 0, the func-
tion v̄(x, θ0) in terms of the function σ(x, θ0) and its partial derivatives
∂σ(x, θ0)/∂x and ∂σ(x, θ0)/∂θ0;

v̄2(x, 0) = v2(x) = −v2
0

{
h(x) +

dσ0(x)
dx

∫ x

0

h(ξ)
σ0(ξ)

dξ
}

∀x ≥ 0, (17)

where

h(x) =
1

σ0(x)

{∂2σ(x, θ0)
∂θ2

0

}∣∣∣
θ0=0

. (18)

Here σ0(x) is the function obtained from the function σ0(z) = ρ(z)v(z) with
substitution (2). Therefore,

σ0(x) ≡ σ(x, 0) ≡ µ(x)
v(x)

≡ ρ(x)v(x). (19)
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The functions v(x) ≡ v̄(x, 0), µ(x), and ρ(x) are obtained from the func-
tions v(z) ≡ v̄(z, 0), µ(z), and ρ(z) by the substitution

x =
∫ z

0

dz

v(z)
≡ x(z, 0), v(x) = v(z), µ(x) = µ(z), ρ(x) = ρ(z) (20)

(the symbols σ0, v, µ, and ρ with the substitution are retained).

Proof. The lemma follows directly from definitions (4), (10)–(13) of the
functions σ(x, θ0) and v̄(x, θ0). Differentiating the identity

σ(z, θ0) ≡ σ(x(z, θ0), θ0) = σ(x, θ0)

with respect to θ0 at some point (z, θ0), we obtain

∂σ(z, θ0)
∂θ0

∣∣∣
z,θ0

=
∂σ(x, θ0)

∂x

∣∣∣
x=x(z,θ0),θ0

· ∂x(z, θ0)
∂θ0

∣∣∣
z,θ0

+

∂σ(x, θ0)
∂θ0

∣∣∣
x=x(z,θ0),θ0

. (21)

It follows from formulas (4) and (11), which define the function x = x(z, θ0),
that

∂x

∂θ0
= α(θ0)

∫ z

0
v̄(z, θ0) dz. (22)

Changing variables (11) and (13) in (22), we obtain

∂x

∂θ0
= α(θ0)

∫ x

0
v̄2(x, θ0) dx. (23)

Then, it follows from formulas (4) and (10) that

1
σ(z, θ0)

∂σ(z, θ0)
∂θ0

= α(θ0)v̄2(z, θ0) = α(θ0)v̄2(x, θ0). (24)

Dividing identity (21) into σ(z, θ0) = σ(x, θ0) and substituting formulas (23)
and (24), we obtain identity (15).

From identity (15), by virtue of α(0) = 0, there follows

Corollary. Let the conditions of Lemma 1 be satisfied. Then the following
identity is valid :

∂σ(x, θ0)
∂θ0

∣∣∣
θ0=0

= 0 ∀x ≥ 0, (25)

whence
∂2σ(x, θ0)

∂x ∂θ0

∣∣∣
θ0=0

= 0 ∀x ≥ 0.
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Let us prove formula (16). Let θ0 6= 0. Then α(θ0) 6= 0. Let us denote

b(x, θ0) =
∂

∂θ0
{lnσ(x, θ0)}. (26)

We obtain from identity (15) at x = 0: b(0, θ0) = α(θ0)v̄2(0, θ0) 6= 0. By
virtue of continuity with respect to x, the function b(x, θ0) is not zero in
some interval [0, ε) of the axis x. Therefore, equality (15) is an integral
Volterra equation of the second kind

y(x) =
∫ x

0
K(x, ξ)y(ξ) dξ + f(x)

for the unknown function y(x) = α(θ0)v̄2(x, θ0) with a continuous (degen-
erate) kernel K(x, ξ) = ∂{lnσ(x, θ0)}/∂x and a continuous right-hand side
f(x) = b(x, θ0). It is known from the theory of integral equations [34, p. 56]
that this equation has the unique solution y(x) in any finite interval [0, a] of
the axis x.

Moreover, the solutions v̄2(x, θ0) to integral equation (15) can be repre-
sented by the following explicit formula:

v̄2(x, θ0) =
1

α(θ0)

{
b(x, θ0) +

∂σ(x, θ0)
∂x

∫ x

0

b(x, θ0)
σ(x, θ0)

dx

}
. (27)

This formula can be obtained by substituting the right-hand side of equal-
ity (27) into equality (15) and integrating by parts (with respect to the
variable x). By virtue of (26), formula (27) coincides with identity (16).

Formula (17) can be obtained in two ways: 1) first we multiply identity
(16) by α(θ0). The identity obtained is valid at any θ0 ≥ 0. Then we
differentiate it with respect to θ0, assuming θ0 = 0, and using equalities
(25), α(0) = 0, and (dα/dθ0)|θ0=0 = −1/v2

0; 2) in formula (16) or (27), we
pass to the limit as θ0 → 0. In fact, at θ0 6= 0

b(x, θ0)
α(θ0)

def= − v2
0

cos θ0σ(x, θ0)
·

∂σ(x, θ0)

∂θ0

θ0 ·
sin θ0

θ0

.

Therefore, by virtue of (25),

lim
θ0→0

b(x, θ0)
α(θ0)

= − v2
0

σ0(x)
lim

θ0→0

∂σ(x, θ0)

∂θ0
− ∂σ(x, 0)

∂θ0

θ0 − 0
· 1

lim
θ0→0

sin θ0

θ0

= − v2
0

σ0(x)
∂2σ(x, θ0)

∂θ2
0

∣∣∣
θ0=0

def= −v2
0h(x).

Hence, passing in (16) or (27) to the limit as θ0 → 0, we obtain (17).
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It follows from formula (17) (by virtue of v2(x) 6= 0) that, in contrast to

the quantity ∂σ(x, θ0)

∂θ0

∣∣∣
θ0=0

(see the corollary), ∂2σ(x, θ0)

∂θ2
0

∣∣∣
θ0=0

6≡ 0 at x ≥ 0.

Remark 2. Formulas (15) and (16) were obtained in [9]. The identities
similar to (15) and(16) take place, as noted in [9, 23, 25], also in the elliptic
case v(z) > v0/ sin θ0 in problems of the HS or the FB types. For instance,
in this case, the formula

+
v 2(x, θ0) =

1
+
α(θ0)

{
+

b(x, θ0) +
∂

+
σ(x, θ0)

∂x

∫ x

0

+

b(ξ, θ0)
+
σ(ξ, θ0)

dξ

}
, (28)

plays the role of formula (16), where

+

b(x, θ0) =
∂

∂θ0
{ln +

σ(x, θ0)},
+
α(θ0) =

sin θ0 cos θ0

v2
0

(this is formula (3.1) in [23] or formula (3.5.1) in [25]). Formula (28) is
obtained from (16) by substituting v̄(x, θ0) for

+
v(x, θ0), σ(x, θ0) for

+
σ(x, θ0),

and α(θ0) for
+
α = −α(θ0).

By definition, the functions
+
v(x, θ0) and

+
σ(x, θ0) are obtained from

1
+
v 2(z, θ0)

=
sin2 θ0

v2
0

− 1
v2(z)

,
+
σ(z, θ0) =

µ(z)
+
v(z, θ0)

by changing the variables

x =
∫ z

0

dz
+
v(z, θ0)

,
+
v(x, θ0) =

+
v(z, θ0),

+
σ(x, θ0) =

+
σ(z, θ0).

Remark 3. It is evident that formulas (15)–(17) and their analogs for the
elliptic case do not depend on the shape of the domain, where the differential
equation is considered and on the boundary conditions. They only express a
relation between the sought-for coefficients v(z) and µ(z) in equation (3) and
the function σ(x, θ0) or

+
σ(x, θ0). Therefore, these formulas can be applied in

the same way to the hyberbolic and the elliptic cases both in the direct and
the inverse problems of the HS type (for an inhomogeneous half-space) and
to the direct and the inverse problems of the FB type (for an inhomogeneous
layer with a free boundary).
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6. Proof of Theorem 2. Solving 2HS and 2FB inverse
problems (a method for reconstructing velocity and
density in an inhomogeneous layer as functions of depth
on the basis of a family of plane waves reflected from the
layer at different angles or a family of the records
u(H, ξ, θ0) of free boundary oscillations with the given
shape ϕ0(ξ, θ0) of incident plane waves)

Let us return to inverse problems 2. First we consider the inverse 2HS
problem. Let the functions v(z) and µ(z) be unknown. Solving the inverse
1HS problem for each value of θ0 ∈ Θ0 by some method (for instance, by
the method from [3, 4]), we uniquely determine (by virtue of Theorem 1)
the function σ(x, θ0) for any θ0 ∈ Θ0 at x ≥ 0. Hence, we can uniquely find
the function σ(x, θ̄0) and the partial derivatives

∂

∂x
{lnσ(x, θ̄0)} and

∂

∂θ0
{lnσ(x, θ0)}

∣∣∣
θ0=θ̄0

≡ b(x, θ̄0).

These derivatives are calculated at a limiting point θ̄0 at x ≥ 0. They are
determined uniquely as well.

Let θ̄0 6= 0. First we find the function v̄(x, θ̄0) by the explicit formula

v̄2(x, θ̄0) =
1
ᾱ

{
b(x, θ̄0) +

∂σ(x, θ̄0)
∂x

∫ x

0

b(x, θ̄0)
σ(x, θ̄0)

dx
}

, (29)

resulting from identity (16) with substitution θ0 = θ̄0. Here ᾱ = α(θ̄0) =
− sin θ̄0 cos θ̄0/v2

0. Then we find the function µ(x, θ̄0) = v̄(x, θ̄0)σ(x, θ̄0) and

the functions z = z(x, θ̄0) =
∫ x

0
v̄(x, θ̄0) dx, v̄(z, θ̄0) = v̄(x, θ̄0), µ(z) =

µ(x, θ̄0), where z = z(x, θ̄0). Finally, with the help of formulas (4) and
ρ(z) = µ(z)/v2(z), we reconstruct the sought for functions v(z) and ρ(z) at
z ≥ 0.

Let θ̄0 = 0. In this case, solving inverse problem 1 for every value
θ0 ∈ Θ0, we determine the function σ(x, θ0) for any θ0 ∈ Θ0 at x ≥ 0, and
then the functions σ0(x) = σ(x, 0) and h(x) defined by formulas (2) and
(18). Then we find the function v(x) by explicit formula (17), the function

µ(x) = v(x)σ0(x), z =
∫ x

0
v(x) dx ≡ z(x) ≡ z(x, 0), and then v(z), µ(z),

ρ(z): v(z) = v(x), and µ(z) = µ(x), where z = z(x) and ρ(z) = µ(z)/v2(z)
at z ≥ 0.

Inverse 2FB problem, according to Remark 3, is considered in a similar
way; the number H is determined by the formula H = z(xH , θ̄0). Theorem 2
is proved.
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Remark 4. The shape of an incident pulse in direct HS and FB problems
and in inverse 1HS, 1FB, 2HS, and 2FB problems can vary for different
values of θ0: ϕ0 = ϕ0(ξ, θ0). In the above-considered problems, the functions
ϕ0(ξ) = ϕ0(ξ, θ0) at different fixed θ0 are not interrelated in any way, because
each of these problems is solved independently for different θ0. Therefore,
ϕ0(ξ, θ0) in these problems need not depend on θ0 smoothly (for instance,
continuously); it can be discontinuous with respect to θ0.

Thus, according to the above method, inverse problems 2 are solved in
the following two stages:

1. Solving inverse 1HS or 1FB problem and determining the function
σ(x) = σ(x, θ0) for the family of angles θ0. Various methods can be
applied at this stage.

2. Reconstructing the functions v(z) and ρ(z) using the family of func-
tions {σ(x, θ0)} with the help of formulas (16) or (17). At this stage,
the solution to inverse 2HS and 2FB problems is uniform.

When we pass to the variables

x =
∫ z

0

dz

v̄(z, θ0)
, u(x, ξ, θ0) = u(z, ξ, θ0),

we obtain, instead of the direct HS problem with conditions (3)–(7) or
the FB problem with conditions (3)–(8), the following equivalent direct
problems. Let X and Dx denote the interval 0 ≤ x < ∞ and half-plane
0 < x < ∞, −∞ < ξ < ∞ in the HS problem, and the interval 0 ≤ x ≤ xH

(xH = x(H, θ0)) and the band 0 < x < xH , −∞ < ξ < ∞, in the FB
problem. Let the numbers θ0 and σ0 = µ0/v0 and the functions σ(x, θ0) at
x ∈ X, ϕ0(ξ, θ0) at −∞ < ξ < ∞ under the following conditions be given:

∂2u

∂x2
+

∂

∂x
{lnσ(x, θ0)}

∂u

∂x
=

∂2u

∂ξ2
, (x, ξ) ∈ Dx, (30)

∂u

∂x
(0, ξ, θ0)− β(θ0)

∂u

∂ξ
(0, ξ, θ0) = −2β(θ0)

ϕ0(ξ, θ0)
∂ξ

, (31)

u(x, ξ, θ0)
∣∣
ξ<0

≡ 0, x ≥ 0. (32)

Moreover, in the FB problem, the following boundary condition is specified:

∂u

∂x

∣∣∣
x=xH

= 0, −∞ < ξ < ∞. (33)

Here β(θ0) = cos θ0 · σ0/σ(0, θ0) = δ(θ0)/σ(0, θ0).
It is necessary to determine, with θ0 considered, the function u(x, ξ, θ0)

satisfying conditions (30)–(32) in the HS problem and conditions (30)–(33)
in the FB problem, as well as the function ϕ1(ξ, θ0) from the condition
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u(0, ξ, θ0) = ϕ0(ξ, θ0) + ϕ1(ξ, θ0). (34)

This form of the direct problem is used in [9] when solving the inverse 1HS
and 2HS problems numerically.

7. Solving inverse problems 2 numerically

Inverse problems 2 at θ0 6= 0 were formulated and investigated in [9] (see,
also, [19, 21]), where an algorithm to solve numerically the inverse 2HS prob-
lem is also proposed and tested. This algorithm to determine the functions
v(z) and ρ(z) specifies the shapes ϕ0(ξ, θ0) and ϕ1(ξ, θ0) of incident and
reflected waves for the finite set Θ of the angles θ0.

If the initial data have no noise, a set Θ consists of two or three close
angles. According to the method considered in Section 6, this algorithm has
two stages of the numerical reconstruction of the functions v(z) and ρ(z):

1. Solving the problem of determining the function σ(x) = σ(x, θ0) for
a fixed θ0 by using a pair of functions ϕ0(ξ) = ϕ0(ξ, θ0) and ϕ1(ξ) =
ϕ1(ξ, θ0) (that is, inverse problem 1).

This inverse problem is solved, for instance, three times for three close angles
θ − ∆θ, θ, and θ + ∆θ, where ∆θ is small. As a result, we obtain three
functions, namely σ1(x) = σ(x, θ − ∆θ), σ2(x) = σ(x, θ), and σ3(x) =
σ(x, θ + ∆θ).

2 Reconstructing the functions v(z) and ρ(z) by the three known func-
tions σ1(x), σ2(x), and σ3(x) with the help of a difference analog to
formula (16).

To numerically solve the inverse 1HS problem of determining the function
σ(x) = σ(x, θ0) based on the given functions ϕ0(ξ) = ϕ0(ξ, θ0) and ϕ1(ξ) =
ϕ1(ξ, θ0), the Antonenko method ( [15]) for solving the 1D inverse seismic
dynamic problem is used in [9]. In this method, the use of the feedback
principle is of interest (in the difference scheme inversion method, which is
one of the main methods to solve inverse problems).

It should be noted that the inverse 1HS problem with conditions (30)–
(32) and (34) differs from that from [15] only by boundary condition (31),
which specifies not the normal derivative ∂u/∂x(0, ξ), but an inclined deriva-
tive. The method used for solving inverse problem 1 in [9] is a modification
of the method from [15] for problem (30)–(32), (34).

In the presence of noise in the initial data, a set Θ consists of a greater
number of values θ

(j)
0 = θ + j∆θ, j = −J, . . . ,−1, 0, 1, . . . , J ; ∆θ > 0, J > 1

of the parameter θ. The higher is the noise level, the larger number J is
chosen; for instance, J = 15. In this case, additional operations are carried
out. These include smoothing of the functions ϕ

(k)
1 = ϕ1(ξ, θ

(k)
0 ) with respect
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to ξ and reconstructing the values σr
i of the functions σi(x) = σ(x, θ

(i)
0 )

with respect to x and θ0. Numerical experiments with this algorithm were
performed and analyzed in [9](see, also, [19, 21]).

In the case of θ̄0 = 0, one can use a similar numerical algorithm. Here,
formula (17) and its difference analog are used instead of (16).

A similar approach can be used to numerically solve the inverse 1FB and
2FB problems.

8. Inverse 3FB problem (with information for the family of
angles θ0 and unknown functions v(z), ρ(z), and
ϕ0(ξ, θ0))

Inverse 3FB problem. Let Θ0 be a sequence defined in the inverse 2HS
and 2FB problems with a limiting point θ̄0. Let, at 0 ≤ ξ < ∞, the values
u(H, ξ, θ0) of the solution u(z, ξ, θ0) to direct 2FB problem with conditions
(3)–(8) for any θ0 ∈ Θ0 be given. Moreover, the numbers v0 and µ0 are
specified. The number H and the functions v(z) and µ(z) at 0 ≤ z ≤ H
and the function ϕ0(ξ, θ0) at 0 ≤ ξ < ∞, θ0 ∈ Θ0 from conditions (3)–(8)
are unknown. It is necessary to determine the number H and the functions
v(z) and µ(z), at 0 ≤ z ≤ H, ϕ0(ξ, θ0) at −∞ < ξ < ∞ and θ0 ∈ Θ0.

Let ϕ̃0(k, θ0) denote the Fourier transform of the function ϕ0(ξ, θ0) over

the variable ξ: ϕ0(ξ, θ0) =
∫ ∞

−∞
ϕ̃(k, θ0) eikξ dk.

Let γ be a contour on the complex plane θ0 = θ01 + iθ02 consisting of
the ray θ01 = 0, θ02 ≥ 0, the section 0 ≤ θ01 ≤ π/2, θ02 = 0, and the ray
θ01 = π/2, θ02 ≥ 0. The inverse 3FB problem is formulated in [8]; this paper
also contains the proof of

Theorem 3. Let conditions (A) of Theorem 1, its condition (B) for any
θ0 ∈ Θ0, and the condition

(D′) dv

dz
= dµ

dz
= 0

be satisfied.
Also, let the following condition be satisfied :

(E) two real numbers k1 and k2 are given. They are nonzero and have the
following properties: the functions ϕ̃0(k1, θ0) and ϕ̃0(k2, θ0) are analyt-
ical in some domain Dγ, which contains the contour γ; the quantities
ϕ̃0(k1, θ0) and ϕ̃0(k2, θ0) are nonzero on the contour γ and take ei-
ther real or pure imaginary values on the contour γ (not necessarily
simultaneously; the values of ϕ̃0(k1, θ0) and ϕ̃0(k2, θ0) are unknown)1.

1In the case of ϕ0 = ϕ0(ξ) (the shape of the incident wave does not depend on θ0),
condition (E) is formulated as follows: two real numbers, k1 and k2, are given; they are
nonzero and such that the numbers ϕ̃(k1) and ϕ̃(k2) are either real or pure imaginary (not
necessarily simultaneously; the numbers ϕ̃0(k1) and ϕ̃(k2) are unknown).
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Then the inverse 3FB problem has the unique solution {H, v(z), µ(z),
ϕ0(ξ, θ0)}.

Let us briefly present the proof of Theorem 3 and the solution to inverse
3FB problem. They are based on the theorem presented below that was
proved in [8] (see also [23, 25]).

Theorem 4. Let conditions (A) and (B) of Theorem 1 and condition (D′)
of Theorem 3 in the direct FB problem with conditions (3)–(8) be satisfied.
Then for any θ0 satisfying condition (H) the solution u(z, ξ, θ0) to the direct
FB problem can be represented in the form

u(z, ξ, θ0) =
∫ ∞

−∞
U(z, k, θ0) eikξ dk, 0 ≤ z ≤ H, −∞ < ξ < ∞, (35)

U(z, k, θ0) = 2 cos θ0σ0µ
−1/2(0)µ−1/2(z)ikϕ̃0(k, θ0)×

Φ(z, k, θ0)Ψ′(H, k, θ0)−Ψ(z, k, θ0)Φ′(H, k, θ0)

Φ′(H, k, θ0) + ik
cos θ0σ

0

µ(0)
Ψ′(H, k, θ0)

, (36)

0 ≤ z ≤ H, −∞ < k < ∞.

Here σ0 = µ0/v0, and the functions Φ(z, k, θ0) and Ψ(k, z, θ0) are solutions
to the equation

d2U

dz2
+

{
p(z) +

k2

v̄2(z, θ0)

}
U = 0, (37)

where

p(z) = −1
2

a2(z)− 1
2

a′(z) = −1
2

µ′′

µ
+

1
4

(µ′

µ

)2
, a(z) =

µ′

µ
, (38)

with the initial conditions, respectively :

Φ(0, k, θ0) = 1, Φ′(0, k, θ0) = α̃ =
1
2

a(0) =
1
2

µ′(0)
µ(0)

,

Ψ(0, k, θ0) = 0, Ψ′(0, k, θ0) = 1.

Here and below the prime denotes differentiation with respect to z. The
integral in formula (35) is a Fourier integral (that is, the formula of its
inversion is valid).

The following lemma was proved in [8]:

Lemma 2. The functions Φ(z, k, θ0) and Ψ(z, k, θ0) for each pair of fixed
values z ∈ [0,H] and k ∈ (−∞,∞) are integer analytical functions θ0 as
well as the complex variable

s = −k2 sin2 θ0/v2
0. (39)
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Taking into account formulas (4) and (38), we can write down equation
(37) in the following form:

−d2U

dz2
+ q(k, z)U = sU, 0 ≤ z ≤ H,

where the function

q(k, z) = −
{

p(z) +
k2

v2(z)

}
(40)

is continuous by virtue of condition (A) at any k ∈ (−∞,∞). Let us consider
for the given k = k1 the following two regular Sturm–Liouville problems with
the same condition at the point z = H and different conditions at the point
z = 0:

−y′′ + q(k1, z)y = sy, 0 ≤ z ≤ H,

cos ϕy(0) + sinϕy′(0) = 0, y′(H) = 0 (ctg ϕ = −α̃);
(41)

−y′′ + q(k1, z)y = sy, 0 ≤ z ≤ H,

y(0) = 0, y′(H) = 0,
(42)

where the numbers H and α̃ and the functions v(z) and µ(z), in terms of
which the function q(k1, z) is expressed, according to (38) and (40), are
taken from the direct FB problem.

With the use of the given numbers k1 and v0 and the sequence Θ0 using
(39), we construct a sequence of numbers s1, s2, . . . , sn, . . . (sn = s(k1, θ

(n)
0 )).

Let Sk1 denote this sequence. It is evident that Sk1 converges to the finite
limiting point s̄ = s(k1, θ̄0). By virtue of formulas (35) and (36) and the
identity ΦΨ′ − Φ′Ψ ≡ 1, we obtain

u(H, ξ, θ0) =
∫ ∞

−∞

2 cos θ0σ
0µ−1/2(0)µ−1/2(H)ikϕ̃0(k, θ0)

Φ′(H, k, θ0) + ik
cos θ0σ

0

µ(0)
Ψ′(H, k, θ0)

eikξ dk.

Here, inverting the integral at k = k1 and for any θ0 ∈ Θ0, we determine
values of the function

A(k1, θ0) = c
{

Φ′(H, k1, θ0) + ik
cos θ0σ

0

µ(0)
Ψ′(H, k1, θ0)

}
,

c = σ0µ1/2(0)µ1/2(H)/ϕ̃0(k1, θ0),
(43)

for any θ0 ∈ Θ0. Separating the real and the imaginary parts of the func-
tion A(k1, θ0), we determine values of the functions {cΦ′(H, k1, θ0)} and
{cβΨ′(H, k1, θ0)} for any θ0 ∈ Θ0 (where β = σ0/µ(0)) (the functions Φ and
Ψ are real for real k and θ0).
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Let us consider Φ and Ψ as functions of the variable s = −k2
1 sin2 θ0/v2

0:
Φ(z, k1, θ0) = Φ(z, k1, s), Ψ(z, k1, θ0) = Ψ(z, k1, s). By virtue of Lemma
2 and condition (E), the functions Φ̃(s) = {cΦ′(H, k1, s)} and Ψ̃(s) =
{cβΨ′(H, k1, s)} are analytical functions of s in some domain D0 of the
plane s. The domain D0 contains a real axis into which the contour γ when
mapping s = s(k, θ0) of form (39) at any k ∈ (−∞,∞) is transformed. We
found their values for any s ∈ Sk1 . Accordance to the uniqueness theo-
rem for analytical functions, the functions Φ̃(s) and Ψ̃(s) are determined
uniquely in the domain D0. We can analytically continue Φ̃(s) and Ψ̃(s) to
the entire straight line −∞ < s < ∞. Hence, all real zeros of the functions
Φ′(H, k1, s) and Ψ′(H, k1, s) are determined uniquely.

It should be noted that the set of all real zeros of the functions Φ′(H, k1, s)
and Ψ′(H, k1, s) forms a spectrum of boundary value problems (41) and a
spectrum of boundary value problems (42), respectively. This follows from
the general theory of the classical Sturm–Liouville problem [18, 34]. Accor-
dance to the results obtained by G. Borg, L.A. Chudov, and V.A. Marchenko
[18, 34], these spectra uniquely determine the numbers α̃ and H and the
function q(k1, z) at 0 ≤ z ≤ H. To solve this problem, let us use the meth-
ods by V.A. Marchenko, M.G. Krein, M.G. Gasymov, and B.M. Levitan
[18, 34] to determine the regular Sturm–Liouville operator on the basis of
two spectra.

Performing the same operations for k = k2, we find the function q(k2, z).
Then we determine the functions v(z) and ρ(z) by the following formulas:

v(z) =
{ k2

2 − k2
1

q(k2, z)− q(k1, z)

}1/2
, p(z) = −q(k1, z) +

k2
1

v2(z)

at 0 ≤ z ≤ H. With the help of the found number α̃ = a(0) and formula
(38), we find the function a(z). Hitherto the number µ0 was not used. If µ0

is specified, we find the number µ(0) = σ0/β (the number β is preliminarily
determined from (43)). Finally, from the equation µ′ − a(z)µ = 0 we find
µ(z). Then, using the reconstructed values H, v(z), and µ(z), we construct

the function B(k, θ0) = Φ′(H, k, θ0) + ik
cos θ0σ

0

µ(0)
Ψ′(H, k, θ0) at θ0 ∈ Θ0,

−∞ < k < ∞. Inverting the Fourier integral for the function u(H, ξ, θ0),
we find the function U(H, k, θ0). Then we find the function ϕ̃0(k, θ0) =
µ1/2(0)µ1/2(H)

2σ0 cos θ0ik
B(k, θ0)U(H, k, θ0) at θ0 ∈ Θ0, −∞ < k < ∞. And, finally,

we find the function ϕ0(ξ, θ0) at θ0 ∈ Θ0, −∞ < ξ < ∞. Theorem 3 is
proved.

Remark 5. The statement of the inverse 3FB problem, in which the val-
ues u(0, z) and uz(0, ξ) are given instead of u(H, ξ, θ0) (see [8, 23, 25]), is
investigated in a similar way.
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Remark 6. Inverse problems similar to inverse problems 1, 2, and 3
were formulated and investigated in [5, 7, 23, 25] also for the elliptic case
v(z) > v0/ sin θ0. In this case, theorems similar to 1–4 are valid. Here, the
corresponding problems from [5, 7] (these are inverse problems 3.2, 5.1, and
5.2 in [23, 25]) “play the role” of the inverse 1HS and 1FB problems, and
formula (28) “plays the role” of formula (16). Statements with the fixed
boundary z = H can be considered in a similar way [6–12].

9. Possible application areas

The inverse problems of the plane wave scattering by inhomogeneous layers
considered in [3–12, 19, 21] and in this paper have an important practical in-
terpretation. First, seismic problems on determining the upper surface layer
of Earth’s cross-section using a horizontal component of the SH type of the
seismic vector of displacements are reduced to these problems in the case of a
layer with a free boundary. This component is measured at the free bound-
ary (the daily surface) excited by a wave coming from depth of the half-
space on which the inhomogeneous layer lies. There exist three-component
devices that can measure this component. Second, these are problems of
determining the characteristics of the inhomogeneous layer which give a re-
flected wave or a field at a free boundary with given required properties,
for instance, the least possible in magnitude. The inverse problems under
consideration also belong to the problems determining the structure of the
sea or the lake precipitation with the use of remote sensing data from the
water reservoir surface considered in [13, 14, 17]. Possible application ar-
eas of these inverse problems include problems of location, tomography, and
non-destructive diagnostics.
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