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The CA-model of populations’ dynamics
of organisms living in lake Baikal

Ivan Afanasyev

Abstract. The cellular automata model of populations’ dynamics of eight types
of organisms is proposed and investigated. The results of two computational exper-
iments of simulation of population density distribution over space are presented.
The first experiment was carried out is for the case of the emergence fishes at outfall
shoal of Selenga. The second one was for the case of food declining in the North.

1. Introduction

Self-organization is the process of time and spatial elements ordering in the
system due to its elements interaction. This definition was given by Haken
in 1980 [1]. Self-organization processes are known in Biology, Chemistry,
Physics, Sociology and Economy. Examples are phase transition, laser, pro-
teins compression, homeostasis, animals staining, etc.

The investigation of self-organization processes requires computer sim-
ulation techniques. As usual, models are based on nonlinear partial dif-
ferential equations, which are difficult or even impossible to be solved and
efficiently parallelized. An alternative approach is Cellular-Automata (CA)
models, which allow simulation of complex nonlinear processes, includ-
ing self-organization processes using comparatively simple rules. The CA-
models for self-organization processes were studied by Wolfram [2], Chua [3],
Vanag [4]. The CA-models for some kinds of Belousov–Zhabotinsky reac-
tions are given in [5]. The CA-model for the “phase-separation” process has
been investigated in [6, 7].

A cellular automaton is a structured set of finite (elementary) automata
named cells. For each cell, a set of adjacent cells is defined. Functioning
of a CA is given by a transition function. A transition function is defined
for each cell and depends on the states of adjacent cells. As usual, the
modeling space structure for a two-dimensional case is presented by a square,
a triangular or a hexagonal mesh. Complex phenomena are simulated using
CA-composition techniques proposed in [6]. The CA under investigation
uses a parallel CA composition. The main idea of the parallel composition is
that several CA are functioning simultaneously and their transition functions
depending not only on the cell states of a given CA, but, also, on the states
of cells of other CA in the composition.

A parallel composite CA-model of an abstract prey-predator system con-
sisting of two groups of organisms is proposed and investigated in [8].
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Up till now population dynamics has been investigated with help of dif-
ferential equations systems given in [9, 10]. The following restrictions being
admitted:

1. Population parameters are proposed to be uniformly distributed
through the area of modeling (mean-field hypothesis).

2. The number of interacting organisms groups is less or equal to 3.

A model of eight populations in Baikal has been proposed and investigated
in [11] using ODE. Thus, the second restriction was overcome using the
numerical simulation.

Here a CA-model is proposed that allows the simulation of a spatial dis-
tribution of organisms when some perturbations occur. This model takes
into account eight organisms groups. The data about the organisms popu-
lation used in the model are given in paper [11].

The first part of the paper is about the task definition, demographic and
food chain interactions. The CA-model is considered in the second part. In
the third part, the results of computational experiments for the following
two cases are given: emergency shoal of fishes in the outfall of Selenga and
initial decline of food in the North.

2. The task definition

Taking into account all Baikal’s organisms is an extremely complicated task.
Comephorus takes leadership according to biomass criteria (about 60% of
the all lake biomass). Its basic food is macrohectopus and its own youngest.
Similar to [11] the three species are taken into account: macrohectopus,
comephorus dybowski, and comephorus baicalensis. Macrohectopus is a
sandhopper. Comephorus dybowski and baicalensis are predatory fishes.
Each of the species is divided into groups by the age criteria:

Species
One-year-old
individuals

Immature
individuals

Puberal
individuals

Macrohectopus m1 m2

Comephorus dybowski d1 d2 d3

Comephorus baicalensis b1 b2 b3

In the explanations to follow, let us assume that the upper parame-
ters’ index presents species α ∈ {m, d, b} and the lower parameters’ index
presents the age i ∈ {1, 2, 3}. Demographic and prey-predator relationships
are displayed in Figure 1.
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Figure 1. Demographic (left) and prey-predator
(right) relationships

3. A composite CA-model

The following assumptions are used in the CA-model:

1. The influence of organisms not listed above is assumed to be constant.
For example, macrohectopus are always satiated, and phoca always
eat a strictly constant amount of comephorus (on a percentage basis).

2. Environmental influence is assumed to be constant.

3. All individuals parameters (speed, size, diet, gender ratio) are averaged
over groups.

4. Only the last age groups individual propagate.

5. Predators’ saturation is not taken into account.

Let us define a CA-model of the populations dynamics of Baikal organ-
isms as

ℵ = 〈Σ,M, f, ρ〉,

where Σ is an alphabet of states, M is a set of cells names, f is a global
transition operator, and ρ is a functional mode.

The model is a parallel composition of eight CA, each being designed to
simulate a concrete group population dynamics. A set of cells names can
be split to eight pairwise disjoint subsets, each one for a concrete group of
organisms. Each of subsets can be presented by a square mesh with a set of
cells Q:

M = Mm
1 ∪Mm

2 ∪Md
1 ∪Md

2 ∪Md
3 ∪M b

1 ∪M b
2 ∪M b

3 ,

Mα
i ∩M

β
j 6= ∅ ⇐⇒ i = j ∧ α = β,

Assume that the bijective mapping ψαi : Q→Mα
i exists.

Let us define the cell as an element of the set M × Σ. The subset Ω of
the set M × Σ is called a cells array if and only if |Σ| = |M | and there are
no cells with equal names. The cells states are integers n ∈ Σ, meaning the
number of organisms in this cell. Let us call twins the cells ψαi (q) and ψβj (q)
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for each q ∈ Q . The closest neighbors pair is the pair of cells such that
these cells are neighbors in terms of a square mesh.

A finite collection S(m) = {(φ1(m), n1), . . . , (φk(m), nk)} is a local con-
figuration, where ni ∈ Σ and φi : M →M . The cells with the names φ1(m),
. . . , φk(m) are neighbors.

In the general case, a local transition operator floc is

floc : {S(m)} → {S(m)}.

The result of applying the operator floc to the cell (m,n) is the replacement
of the local configuration S(m) by the local configuration floc(S(m)). Iter-
ation or global operator application consists of local operators applied to all
cells. Evolution is a consecutive process of the global operator application.

In this paper, two global transition operators are used:

1. The operator f1 for modeling organisms’ movement.

2. The operator f2 of the organisms’ quantity changing due to the prey-
predator mechanism.

The two basic functional modes are known: synchronous and asyn-
chronous. In synchronous mode the arguments of the local transition op-
erator are the cell states on the current iteration t. The new cells states
are calculated, and all the cells change their states simultaneously. In asyn-
chronous mode is that the new cell state is calculated based on the current
states of the neighbors, and the cell state is changed immediately. The cell,
whose state is to be updated, is randomly chosen [12].

The CA-model under investigation uses a slightly more complex compos-
ite functional mode, which combines synchronous and asynchronous modes.
First, the operator f1 of organisms movement is applied asynchronously
several times for each subset Mα

i independently. Second, the operator f2 is
applied with a functional mode specified in Section 3.2.

3.1. The movement operator

Let fdloc and fd be local and global transition operators of the integer diffu-
sion according to [13]. The operator fdloc is defined for each set Mα

i :

fdloc : {S1(m)} → {S1(m)},

where S1(m) is a set of neighbors of a cell with the name m.
Application of fdloc to a cell named m is performed according to the

following algorithm:

1. Let m1, . . . ,mk be the names of the neighbors of a cell named m. The
square mesh structure reveals that k ≤ 4.
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2. A cell with the name mi is randomly chosen with equal probability.

3. Let n and ni be the cells states named m and mi, respectively.

4. The new states n′ and n′
i are given by the formulas:

n′ = n− [σ · n] + [σ · ni], n′
i = ni + [σ · n]− [σ · ni],

where σ is an integer diffusion ratio.

The global transition operator fd assumes the asynchronous functional
mode.

Let us define the movement operator f1. Let S be the area of Baikal. Let
N be a number of cells equal to |Mα

i |. The edge size for a cell is given by the
formula a =

√
S/N . Let vcr be the cruising speed of an individual organism

of species α from age group i. Let δt be a physical time step equivalent to a
model iteration. A maximum number of cells visited by the individual can
be calculated as

Kα
i =

vcrδt

a
. (1)

Let us define f1|Mα
i

as a K-wise sequential application of fd:

f1|Mα
i

= (fd)K
α
i .

Let us define the movement operator f1 as

f1(S(m)) =


f1|Mm

1
(S(m)) if m ∈Mm

1 ,

f1|Mm
2

(S(m)) if m ∈Mm
2 ,

. . .

f1|Mb
3
(S(m)) if m ∈M b

3 .

3.2. The quantity changing operator

The local quantity changing operator is

f2
loc : {S2(m)} → {S2(m)},

where S2(m) is a collection of twin cells. The
schematic view of S2(m) is given in Figure 2.

The mode of the global transition operator f2

is slightly more complex than conventional syn-
chronous or asynchronous modes. The choice
of a twins set is random and f2

loc is used syn-
chronously for each set of twins. The new cell
state after applying the operator f2

loc is Figure 2
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n′ =

{
n+ b∆nc if ξ < frac(∆n),
n+ d∆ne otherwise,

,

where ξ ∈ (0, 1) is a random number, ∆n is the population growth, and
frac(∆n) is the fractional part of the population growth.

The population growth of the ith age-group is given by the formula:

∆ni = (ρinj − λini − θini)∆τ,

where j is the age-group number whose individuals produce individuals from
the ith age-group, ∆τ is the physical time corresponding to one CA iteration,
ρinj is the ith age-group quantity growth due to propagation (case i = 1)
or aging (case i > 1), λini is the number of dead individuals, and θini is the
number of grown up individuals.

The propagation ratios ρm1 , ρd1, ρb1, the aging ratios ρm2 , ρd2, ρd3, ρb2, ρb3,
and the death ratios λm1 , λm2 , λd1, λb1 are taken from [11].

As opposed to [11], the CA-model takes into account the dependence
on the death ratios λd2, λd3, λb2, λb3 on lack of food. Let χαi be a relative
overpopulation of the group αi:

χαi =
nαi
n̄αi
,

where n̄αi is the average individuals quantity of αi group [11].
Let ξβαji be a ratio of a relative lack of food:

ξβαji = 1−
χβj
χαi
.

If ξβαji is greater than zero, it is multiplied by a constant c depending on the
predator diet and is added to the constant predators’ death ratio λ̄αi . Let
γ(ξ) = max{ξ, 0}. Then, the death ratios are calculated as follows:

λαi = λ̄αi + (1− λ̄αi )
(
cα
γ(ξmα1i ) + γ(ξmα2i )

2
+ (1− cα)

γ(ξbα1i ) + γ(ξdα1i )
2

)
,

i = 2, 3, α ∈ {b, d},

where cb = 0.37, cd = 0.07 are ratios depending on the predators’ diet. The
terms meanings are as follows:

(1− λ̄αi ) is an alive individuals part after subtracting the death ratio λ̄αi ,
γ(ξmα1i ) + γ(ξmα2i )

2
is a relative lack of macrohectopus,

γ(ξbα1i ) + γ(ξdα1i )
2

is a relative lack of one-year-old comephorus.
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4. Computational experiments and program implementation

In the computational experiments, the model area size is |Mα
i | = 234296

cells. Baikal area S is 31722 km2. Therefore, the cell size is 368 × 368
meters. The physical time ∆τ corresponding to an iteration is taken two
days. An individual organism trajectory length in meters per two days
with allowance for vertical and random migrations is given in Table 1. The
numbers Kα

i are defined according to (1) in Table 2.

Table 1. Individual trajectory lengths

Age
group

Macro-
hectopus

Comephorus
dybowski

Comephorus
baicalensis

1 200 1000 2000
2 400 2000 3000
3 4000 5000

Table 2. Values of Kα
i

Age
group

Macro-
hectopus

Comephorus
dybowski

Comephorus
baicalensis

1 1 2 5
2 1 5 8
3 10 13

The program has been developed in C++ language using Qt and OpenGL
libraries. Calculations parallelization is done with OpenMP technology. Sets
of cells for each group of organisms are integer arrays. Application profil-
ing was done before parallelization. The results of profiling are given in
Table 3. Intel Core i7-2600, 4 cores
× 3.4 GHz, 8 Gb RAM was used for
timing.

From Table 3 it follows that
parallelization should be done only
for the step of movement model-
ing. Since the movement operators
for each set can be applied indepen-
dently, the following 4-thread paral-
lelization method was chosen:

Table 3. Single-threaded application
profiling results in seconds

Cell
count

Painting
Quantity
changing
(1 call)

Movement
(1 call)

1464 K 1.0 0.44 18.14
2109 K 1.5 0.63 34.03
3749 K 2.6 1.13 87.96

Thread 1: movement of m1 (immature macrohectopus) and d3 (puberal
comephorus dybowski);

Thread 2: movement of m2 (puberal macrohectopus), b1 (one-year-old com-
ephorus baicalensis), and d2 (immature comephorus dybowski);

Thread 3: movement of b2 (immature comephorus baicalensis) and d1 (one-
year-old comephorus dybowski); and

Thread 4: movement of b3 (puberal comephorus baicalensis).

According to Table 1, a theoretical speedup peak is 3.5 (restricted by
the movement of b3 on the 4th thread). The results of profiling after paral-
lelization are given in Table 4.

The parallelization efficiency is about 80.8 %, or 92.3 % of the theoretical
peak. The main advantage of such a parallelization method is its realization
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Table 4. Parallelization timing results

Cell
count

Movement
1 thread (s)

Movement
4 threads (s)

Speedup
Speedup

peak

1464 K 18.14 5.77 3.14 3.5
2109 K 34.03 10.52 3.23 3.5
3749 K 87.96 27.51 3.20 3.5

simplicity. On the other hand, the solution is not scalable for the number
of threads greater than 4.

In population maps shown below, the lighter color means the larger den-
sity and the darker color means the smaller density. The following drawing
procedure was used: a cell with the largest value has the lightest color 255.
The color of other cells linearly depends on their values from 0 to 255. Thus,
the pictures show only a relative difference between colors. As one can see
further, such a case contains sufficient information for making analysis.

4.1. Experiment 1: Shoal of fishes at the outfall of Selenga

The experiment is aimed at investigation of the CA-model evolution for the
case of enormous concentration of predators in some local area.

The comephorus quantity in the initial state is increased at the out-
fall of Selenga up to three times as compared to values at a steady state,
and inversely depends on the distance from the outfall of Selenga. The
macrohectopus quantity over the whole model area is equal to the steady
state (Figure 3).

The evolution result is a steady state. In this experiment, the population
dynamics is a local process at the outfall. There is no population change
outside the outfall (Figure 4). Therefore, for this experiment it is needed
to analyze local processes at the outfall. A few snapshots of evolution are
given in Figure 5.

It is possible to notice the population spatial wave (see Figure 5) for
t = 100 and 200. Population values for each group in cells inside and outside

Figure 3. Initial state
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Figure 4. Certain global states of d2 population

Figure 5. Certain states at the outfall

Figure 6. The ratio of the current population to the steady state in a cell
at the outfall

of the outfall in steady states are equal within the deviation of about 5 %.
The population dynamics of puberal macrohectopus, immature comepho-

rus dybowsky and immature comephorus baicalensis in a cell at the outfall
are given in Figure 6. In the start iteration, the quantity of immature
comephorus dybowsky and immature comephorus baicalensis individuals is
about 1.8 times greater than the corresponding quantity in the steady state.
The puberal macrohectopus quantity on the start iteration is equal to the
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value in the steady state. In the first iterations, the number of all individuals
decreases due to an excessive quantity of predators. Further, the number
of preys is growing due to a significant extinction of predators. Finally,
the quantity of individuals after the oscillating process becomes closer to a
steady state.

Thus, starting with a locally irregular state, the model works for the
steady uniform state. No fluctuations are observed for the steady state.

4.2. Experiment 2: Lack of food in the North

The objective of the experiment is to investigate the CA-model behavior in
the case of an extreme reduction of food in the local area.

The initial state is shown in Figure 7. The macrohectopus quantity is ten
times decreased in the North as compared to the the steady state, while the
comephorus quantity is equal to the steady state. As a result of evolution,
the system works for the steady state.

Similar to Experiment 1, population dynamics is a local process. There
are no population changes outside of the area with unstable initial state (Fig-
ure 8). Therefore, in this case, only the area in the North should be taken
into account. A number of snapshots of the evolution are presented in Fig-
ure 9.

The population dynamics of puberal macrohectopus, puberal comepho-
rus dybowski and immature comephorus baicalensis in a cell in the North

Figure 7. Initial state

Figure 8. Certain global states of b2 population
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Figure 9. Certain states in the North area

Figure 10. The ratio of the current population to the steady state in a cell
in the North

is given in Figure 10. In the initial state, the quantity of puberal macrohec-
topus is 10 times less than that in steady state. The quantity of predators
is equal to the steady state. In the first iterations, the number of predators
decreases due to the lack of food. After that, the number of preys and preda-
tors starts growing, and the system tends to the steady state as a result of
the oscillating process. Thus, the initial state irregular model evolves to the
steady uniform state. No fluctuations are observed.

5. Conclusion

The new CA-model of the populations’ dynamics of some Baikal organisms
is proposed. This model allows one to investigate the spatial distribution of
organisms in lake Baikal.
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The CA-model proposed does not take into account a seasonal depen-
dence of death and borne rates. In a real situation, this occurs, and the
seasonal population fluctuations are observed.

In the future, we are going to introduce time and spatial dependence of
borne and death rates in order to take into account seasonal features and
possible pollution of the area.
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