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A CA-model of population dynamics of organisms
living in Baikal. Verification and investigation of

pollution influence∗

Ivan Afanasyev

Abstract. The CA-model was modified in order to take into account the birthrates
seasonal dependency and the influence of water streams on movements of organisms.
The model was verified within the production-to-biomass and the relative average
quantity criteria. A difference in the verification results and the assessments of
physical values is about 20 %. The simulation of a possible pollution influence was
carried out. The assessment of the critical pollution that leads to the total death
of individuals and acceptable pollution with no observable influence are presented.

1. Introduction

Investigation of the population dynamics is an important problem. A real-
istic result of the investigation is the ability to assess limits of the anthro-
pogenic influence on the ecosystem, which is environmentally acceptable and
economically sound.

Up till now, the population dynamics has been investigated with the help
of differential equations systems [1, 2]. In the models used, the number of
interacting organisms groups is less or equal to 3, and the population param-
eters are uniformly distributed over the modeling area. The model of eight
populations in lake Baikal has been proposed and investigated in [3] using
ODE. So, the first restriction was overcome using the numerical simulation.

A CA-model of the population dynamics of eight organisms groups living
in lake Baikal is presented in [4]. This model allows us to take into account
the spatial distribution of organisms and a possible local pollution. However,
the modeling area is proposed to be in the form of a square of the size much
less than that of the lake. Also, the seasonal influence and water streams
are neglected.

In this paper, a modified version of the CA-model [4] is presented. The
area under simulation matches the lake Baikal geometry. Also, the seasonal
influence on birthrates and water streams is taken into account. The data
about the organisms population used in the model are taken from [3].

The model is verified by comparing the assessments of the physical values
and the simulation results. The fact is, it is difficult to find data for local ar-
eas in Baikal, so the verification criteria proposed use the global assessments
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averaged for a simulated area. The production-to-biomass and quantity-to-
quantity criteria were chosen for the verification. Simulation results differ
from assessments of physical values in about 20 %.

The model was used to investigate a possible pollution influence. As-
sessments of a critical and an acceptable pollution are presented.

2. A composite CA-model

Three kinds of organisms are investigated: macrohectopus. comephorus dy-
bovsky and comephorus baikalensis.

Each kind of organisms is divided into the age groups (letters {m, d, b}
designate the kind, and numbers {1, 2, 3} designate the age group):

• Macrohectopus: immature m1, puberal m2,

• Comephorus dybovsky: one-year-old d1, immature d2, puberal d3,

• Comephorus baikalensis: one-year-old b1, immature b2, puberal b3.

Totaly, there are eight groups of organisms. Prey-predator and demographic
relations are considered for groups.

Let us define the CA-model of the population dynamics of the Baikal
organisms as

ℵ = 〈Σ,M, f, ρ〉,

where Σ is the alphabet of states, M is the cells names set, f is the global
transition operator, ρ is the functional mode.

The model is a parallel composition [5] of eight CA, each being designed
to simulate a concrete group of the population dynamics.

Let Q be a square mesh that covers the surface of Baikal. A set of cell
names M is a union of eight pairwise disjoint subsets Mα

i :

M = Mm
1 ∪Mm

2 ∪Md
1 ∪Md

2 ∪Md
3 ∪M b

1 ∪M b
2 ∪M b

3 .

Assume that bijective mappings ψαi : Q 7→Mα
i exist for all i and α.

Let us define the cell as an element of the set M × Σ. Cell states are
integers n ∈ Σ, to characterize the density of organisms in this cell. A finite
collection of cells

S(c) = 〈(φ1(c), n1), . . . , (φk(c), nk)〉

is a local configuration, where ni ∈ Σ and φi : M →M are naming functions,
which define the names of cells, interacting with the cell named c.

In the general case, Local transition operator f is

f : {S(c)} 7→ {S(c)}.
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The result of applying the operator f to a cell named c is replacing the
local configuration S(c) by the local configuration f(S(c)). Iteration or
application of the transition operator F is application of the local operator
to all the cells.

The operator F is a sequential composition of the two operators [5]:
F = F1 ◦ F2, where F1 is the movement operator, F2 is the demographic
operator.

The movement operator F1 on its part is a sequential composition of a
free movement operator Fd and a water-stream operator Fs: F1 = Fd ◦ Fs.

2.1. Free movement operator

Let fz and Fz be local and global transition operators of integer diffusion
according to [6]:

fz : {S1(c)} 7→ {S1(c)},

where S1(c) is a set of the neighbors of the cell named c including the cell
itself. Let us define cells with the names c, c′ ∈ Mα

i as neighbors if they
correspond to the neighboring cells of the square mesh Q.

Application of fz to the cell named c is performed with the following
algorithm:

1. Let (c1, n1), . . . , (ck, nk) ∈ S1(c) be the neighbors of the cell (c, n), k ≤
4. Number i ∈ {1, . . . , k} is randomly chosen with equal probability.

2. The new states n′ and n′i of the cells named c and ci are obtained by
the formula

n′ = n− [σ · n] + [σ · ni], n′i = ni + [σ · n]− [σ · ni],

where σ is the diffusion ratio, 0 ≤ σ ≤ 1.

The operator Fz is asynchronously applied.

Let us define the free movement operator Fd. Let l be the physical size
of a cell from the mesh Q. Let vcr be a cruising speed of organisms of the
kind α and the age group i. Let ∆t be a physical time step equivalent to
the model iteration. The maximum number of cells visited by the individual
can be calculated as

Kα
i =

vcr∆t

l
.

Let us define Fd|Mα
i

as a Kα
i -wise sequential application of Fz:

Fd|Mα
i

= (Fz)
Kα
i .
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2.2. The water-stream operator

Let stream(c) : M 7→ R2 be a water streams map. The two-dimensional
vector stream(c) = (vx, vy) is a physical speed of water stream in the cell
named c. The direction x corresponds to the West-to-East direction. The
direction y corresponds to the South-to-North direction.

The local operator fs is designed to simulate the organisms movement
with water streams. The algorithm of fs application to the cell named c
is recursive. The cell named c is observed at the first level of recursion.
The neighbors of the cell named c are observed at the second level of recur-
sion. Then the neighbors of the neighbors, and so on. The number of cells
observed at the k-th level does not exceed 2k.

Let l be the size of a cell from the mesh Q. Let ∆t be a time which
corresponds to one iteration.

Application of fs to a cell named c is performed with the following algo-
rithm:

1. Find ckx and cky the neighbors names of the cell named ck in the

directions vkx and vky , where k is a level of recursion, ck is the name of cell

currently being observed, (vkx, v
k
y ) = stream(ck) is the stream vector in the

cell named ck.
2. Find nkx and nky , i.e., the number of organisms of the cell named ck

moved by water streams to the cells named ckx and cky , respectively:

nkx =


nk

vkx
|vkx|+ |vky |

, skx > 1,

nk
vkx

|vkx|+ |vky |
skx, skx ≤ 1,

nky =


nk

vky
|vkx|+ |vky |

, sky > 1,

nk
vky

|vkx|+ |vky |
sky , sky ≤ 1,

where nk is a model number of moving organisms of the cell named ck, nk is
calculated at (k − 1)-th level of recursion at Step 3 if k > 1 and n1 is equal
to the state of the cell named c if k = 1, skx and sky are a number of cells,

covered with a water stream during the time τk:

skx =
τkvkx
l
, sky =

τkvky
l
,

τk is the physical time calculated as follows:

τ1 = ∆t, τk = τk−1 −∆τk−1,

∆τk−1 being the time spent by the water stream to cover the distance l at
the previous recursion level:

∆τk−1 =
l

vk−1x

or ∆τk−1 =
l

vk−1y

.
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3. If skx > 1, then the algorithm is recursively applied for the cell named

ck+1 = ckx and nk+1 = nkx and ∆τk =
l

vkx
. The same checking is done for

y-direction.

2.3. The demographic operator

Let f2 be a local demographic operator:

f2 : {S2(c)} 7→ {S2(c)},

where S2(c) is a set of twins (Figure 1).
Let us define cells with the names cαi ∈Mα

i

and cβj ∈ M
β
j as twins if they correspond

to the same cell in Q, i.e., (ψαi )−1(cαi ) =

(ψβj )−1(cβj ): Figure 1

∃i ∃α : c ∈Mα
i ,

q = (ψαi )−1(c), q ∈ Q,

S2(c) =


(ψm1 (q), nm1 ), (ψm2 (q), nm2 ),
(ψd1(q), nd1), (ψd2(q), nd2), (ψd3(q), nd3),
(ψb1(q), n

b
1), (ψb2(q), n

b
2), (ψb3(q), n

b
3)


The functional mode of the local operator f2 is synchronous.
The new state of the cell named cαi ∈Mα

i is given by the formula

(nαi )′ = nαi + (ραi n
α
j − λαi nαi − θαi nαi )∆t,

where j is the age group of organisms that generates organisms of the i-th
age group, ∆t is the time which corresponds to one iteration, ραi n

α
j is an

income into the group due to the birth or aging, λαi n
α
i is an outcome from

the group due to the death, θαi n
α
i is an outcome from the group due to aging.

The birthrates ραi , the deathrates λαi and the aging rates θαi are taken
from [3].

1. Aging rates θαi are constant,

2. Deathrates λd2, λ
d
3, λ

b
2, λ

b
3 are constant,

3. Deathrates λm1 , λ
m
2 , λ

d
1, λ

b
1 are obtained as follows:

λαi = aαi + bαi (nd2 + nd3) + dαi (nb2 + nb3), (1)

where aαi , bαi , dαi are constant, bαi and dαi define deaths of preys due to
eating by predators, aαi define deaths due to other reasons,

4. Birthrate ρm1 is constant,
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5. Birthrates ρd1, ρb1 are obtained as follows:

ρα1 = µα(nm1 + nm2 ) + να(nd1 + nb1),

where constants µα and να depend on preferences of predators.

Figure 2. Graphs of sb(t) (grey)
and sd(t) (black)

In order to take into account the
seasonal dependency, the birthrates
ρd1 and ρb1 are multiplied by the pe-
riodic functions sd(t) and sb(t) (Fig-
ure 2). Their period is equal to one
year. Zero corresponds to the 1st of
January.

3. The model verification

The model verification is done for the three kinds of organisms (data are
summarized by the age groups).

The following criteria were chosen for the verification:

• Pα/Bα is the ratio of production to biomass for organisms of the kind
α. The production Pα is the positive change of biomass per year. The
production includes the born and aged organisms, but does not include
dead organisms, Bα is an averaged biomass per year.

• Nα/Nβ is the ratio of the number of organisms of the kind α to the
number of organisms of the kind β. Nα is an averaged number of
organisms per year.

Pm = P 1
m + P 2

m, Bm = B1
m +B2

m, Nm = N1
m +N2

m,

Pd = P 1
d + P 2

d + P 3
d , Bd = B1

d +B2
d +B3

d , Nd = N1
d +N2

d +N3
d ,

Pb = P 1
b + P 2

b + P 3
b , Bb = B1

b +B2
b +B3

b , Nb = N1
b +N2

b +N3
b .

The assessment of Bm is given in [7] and equals 110,000 ton. The as-
sessment of Pm is also given in [7] and varies from 330,000 to 900,000 ton.
Thus, the assessment of Pm/Bm is 3–8.

The assessment of
Pd + Pb
Bd +Bb

is given in [8] and equals 1.24. Assessments

of Nm/Nd and Nm/Nb is given in [3].

Pm
Bm

Pd+Pb
Bd+Bb

Nm
Nd

Nm
Nb

[3, 7, 8] 3–8 1.24 6.05 21.52
Model 5.77 1.49 6.00 20.45

The verification results are
shown in the table. The difference
in the model results from the
assessments given in [3, 7, 8] is
about 20 %.
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4. The pollution influence

The model allows us to take into account the influence of the possible pol-
lution. Let poll(c) : M 7→ R+ be a pollution map, i.e., a function of the cell
name with a range in the positive numbers characterizing pollution intensity.
Let us assume that pollution affects deathrates.

1. The new deathrates of predators λd2, λ
d
3, λ

b
2, λ

b
3 are given as follows:

(λαi (c))′ = λαi (1 + poll(c)).

2. The new deathrates of preys λm1 , λ
m
2 , λ

d
1, λ

b
1 are given as follows:

(λαi (c))′ = λαi + poll(c)aαi ,

where aαi is a constant deathrate from (1).

The pollution map poll(c) used
is shown in Figure 3. The func-
tion poll(c) is the normal distribu-
tion density with the center in the
cell c0 south of lake Baikal multi-
plied by a constant. Grey color
means land. White color means wa-
ter. Darker color means a greater
pollution intensity. Figure 3

5. Computational experiments

In further computational experiments, the initial state is a uniform dis-
tribution of individuals and organisms’ density equal to the stable state
poll(c0) = 14 [3].

Some iterations for the simulation of the puberal macrohectopus popu-
lation dynamics are presented in Figure 4. The pattern formation process is
observed outside of the polluted area. Non-uniform distribution is a result
of the water streams influence.

Population dynamics in the north area of Baikal (Figure 5) tends to
steady annual oscillation process. Annual oscillations are the result of sea-
sonal dependency of birthrates.

The population dynamics in the pollution epicenter c0 is presented in
Figure 6; poll(c0) = 14.

The population dynamics in the cell with poll(c) = 2.3 is given in Fig-
ure 7. The number of preys is increased and the number of predators is
decreased as compared to non-polluted area.
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t = 50 t = 200 t = 2000

Figure 4. Some iterations for simulating the puberal macrohectopus population
density. A darker color means a higher individuals density

Figure 5. The population dynamics in a cell in the north area of Baikal for
immature macrohectopus (left) and immature comephorus dybovsky (right)

Figure 6. The population dynamics in the pollution epicenter for immature
macrohectopus (left) and immature comephorus dybovsky (right). A brighter

line means the same dynamics in the cell without pollution

Figure 7. The population dynamics if the cell with poll(c) = 2.3 for m1 (left) and
d2 (right). A brighter line means the same dynamics in the cell without pollution
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Figure 8

In order to investigate the dependency of
the average annual density on the pollution in-
tensity, several points along the segment given
in Figure 8 were investigated.

The distribution and density of the pollu-
tion intensity at the 2,000th iteration along the
segment is presented in Figure 9.

Figure 9. The pollution intensity distribution (left) and the density of immature
macrohectopus at the 2,000th iteration (right) along the segment. The axis x means
the distance from the South-West point in the pollution epicenter to North-East

The following conclusions might be proposed:

• If poll(c) > 10, then the macrohectopus density at the 2,000th iteration
is less than 3 % of average density in non-polluted area. That means
total death of organisms.

• If poll(c) ∈ (0.15, 5), then the number of preys increases and number
of predators decreases in comparison to non-polluted case. Concrete
values depend on poll(c) intensity.

• If poll(c) < 0.03, then pollution influence is not observable within
natural annual oscillations.

6. Conclusion

The CA-model [4] of the population dynamics of eight organisms in lake
Baikal was corrected and extended by taking into account the lake geometry,
seasonal dependency of birthrates and water streams.

A difference in the model verification results from the assessments given
in [3, 7, 8] is about 20 %.

The dependency of the model behavior on the pollution intensity is in-
vestigated. The influence of local pollution is localized in the polluted area.
The assessments of the critical pollution that leads to the total death of
organisms have been obtained, as well as the acceptable pollution whose
influence is not observable.
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