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Modeling of self-replication
in cellular space using
the Parallel Substitution Algorithm

S.M. Achasova

The Parallel Substitution Algorithm — a spatial model used to represent cellular
computations — is applied to designing self-replicating structures in cellular space.
The implementation of the Parallel Substitution Algorithm enables one to develop
more compact (according to the number of states and the number of transition rules
or substitutions) and structured programs in comparison with the proper cellular
automata. As an example, a typical self-replicating loop is taken.

1. Introduction

The creation of self-replicating structures began with von Neumann’s uni-
versal constructor — a cellular automaton which is capable to build a copy of
itself [1]. A logical organization of the universal constructor is sufficient for
self-replication. The question of the minimum logical organization necessary
for self-replication was studied by Langton, who designed a simple and com-
pact structure embedded in a cellular array, capable of self-replication only
[2]. It is referred to as a self-replicating loop. Langton has stated a criterion
for the true self-replication which required that a program embedded in the
cellular automaton should be both used as instructions to be executed and
copied as uninterpreted data. With application of Langton’s criterion the
construction of a copy is actively directed by the structure itself rather than
being merely a consequence of the transition rules, which enables one to rule
out trivial cases of self-replication.

It is known that the design of transition rules of a cellular automaton
(CA) to perform a specific task is not an easy problem. Two approaches
to creating self-replicating structures in a cellular space are available in the
literature. The first one involves the application of genetic algorithms [3]
and the second one — L-systems (Lindenmayer systems) [4, 5] to discover the
CA rules governing self-replicating structures. In this paper, we introduce
an extended paradigm of the CA, called the Parallel Substitution Algorithm
(PSA) [6], to specify a self-replicating structure. The PSA has the following
extra possibilities as compared to the classic CA: an arbitrary template of
substitution, the change of states of several cells in the same substitution,
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functional substitutions. These enable us to develop a laconic description of
self-replication and computation in cellular space.

There are two lines of application of the investigation results into self-
replication. The first one is a new cellular architecture called embrionics, or
embryonic electronics, endowed with properties of self-replication and self-
repair [7-9]. The second line is a novel massively parallel structure capable
of solving a specific class of problems while self-replicating [10, 11]. It is
evident that the self-replication is one of the key themes of research into
these applications.

2. A self-replicating loop

Langton’s self-replicating loop is based on Codd’s periodic emitter that is
a storage element and timing device in Codd’s universal constructor [12].
It is a square loop embedded in the 2D cellular au-
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self-replication.

Replication is obtained in the following way. The construction first ex-
tends its constructing arm by six cells, next it turns left and adds other six
cells. After three such turns the arm folds upon itself. When the new loop
is closed, the constructing arm retracts, and the new loop starts the process
over again.

The replication process in more detail is demonstrated on a simple typical
self-replicating loop [4], which is obtained using L-system. It is just that
loop which will be further modelled using the PSA. It is an unsheathed
loop. (The point is that at a later time Langton’s loop was simplified. One
of simplifications is to eliminate first the internal sheath and then both of
them. This brings about smaller self-replicating structures that have simpler
transition functions.) The loop is embedded into a two-dimensional, 9-state,
5-neighbor cellular automata space. In Figure 2, the replication process and
the letter used as states are shown.

The whole replication process consists of 44 derivation steps. The repli-
cation time is defined as the number of steps it takes for both the new loop
to appear and the original loop to turn back to its initial state. The total
number of the transition rules is 52.
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Figure 2. Letters used in the replication process: o is a building component; e, n,
w, and s are east, north, west, and south moving growth signals respectively; 1 is
a left turn signal; b is a first branch signal; ¢ is a second branch signal; and blank
space is a quiscent state

3. The Parallel Substitution Algorithm

The PSA, as the CA, belongs to the class of spatially distributed dynamic
system models in which many simple components locally interact to produce
complex patterns of global behavior. As in the CA, time in the PSA is
discrete, and space is divided into in the two-dimensional (in theory, N-
dimensional) lattice of cells, representing an automaton or a processor. Each
cell can be in one of n possible states synchronously updated in this paper
according to a local transition rule or a substitution. A cell is represented
by a pair (a,m), where a is a cell state, a € A, m is a cell name, m € M, A is
a set of states, M is a naming set of the Cartesian coordinates in a discrete
space, and in our case m = (z,y). On the set M, the naming functions
¢i(m) are defined, ¢;(m) : M — M, for any m € M ¢;(m) # ¢;(m). In this
case, shift functions are taken as naming ones.

Operations on a cellular array are given by a set of parallel substitutions

&={0}i=1,...,n,
91' : Sil (m) * Sz'z (m) = Sz'3 (m),

1(m) = {(ai, ¢ir(m)) ... (aip, dip(m))},
i2(m) = {(bi1,¥i1(m)) ... (big, Yiq(m))},
i3(m) = {(ci1, dir(m)) ... (cip, Pip(m))},

where ¢;x(m) (k=1,...,p) and ¢;(m) (I =1,...,q) are naming functions,
their values for any m € M must be different. A subset of the naming
functions {¢;x(m)} contains an identical function ¢;j(m) = m, and a cell
with the name m is referred to as central cell of the substitution. A set of
the naming functions {¢;x(m)}U{ti(m)} defines a geometrical figure in the
space which is called the template of the substitution. Note, that ¢;q, ...,
cip can be both merely states and functions of states a;1, ..., asp, b1, ...,
big. In the latter case, the substitutions are named functional.

A parallel substitution 6; is applicable to a cellular array K if there is at
least one cell with the name m € M such that S;;(m) U S;2(m) C K. It is
executed by substituting the cells of the right-hand side S;3 for the cells of
the base S;1. The cells of the context S;3 remain unchanged.
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A set of parallel substitutions ® = {6y, ...,0,} is applied to K according
to the following iterative procedure. Let us assume that K(t) is a cellular
array being a result of execution of a set of the parallel substitutions ¢
in K in t iteration steps. Further, if no substitution #; € ® is applicable
to K(t), then K(t) is a result of the computation, else all applicable to
K (t) substitutions are executed simultaneously, and K (t) is transformed to
K(t+ 1), that is the result of the (¢ + 1)-th iteration step.

Determinacy of a parallel computation performed according to the above
synchronous procedure is provided with the property of non-contradiction
of a set of parallel substitutions ®. This property lies in the fact that the
application of ® to any K (specified over the given sets A and M) cannot
give a set of cells in which there are if only two cells with the same names
and different states.

The non-contradictory set of parallel substitutions ® together with the
above iterative procedure of its execution is called the parallel substitution
algorithm.

4. A self-replicating parallel substitution
algorithm

A PSA for self-replication of the loop, shown in Figure 2, consists of 18
parallel substitutions, 6 symbolic ones 64, ..., g and 12 functional ones 687,
..., B13. The cells require six states, designated 1, 2, 3, 4, 5, (). States 1 and
3 as a branch signal represent intermediate ones during the growth process.
A template of each substitution is 2 X 2 square. Either of 12 functional
substitutions takes one of four templates p1, pa2, p3, ps as its left-hand side
and uses one of the five functions f;, ..., f5 in its right-hand side. The
substitutions as geometrical figures are shown in Figure 3.

Two of the symbolic substitutions and one of the functional substitutions
can be represented as the following formulas, the rest ones can be written
down in a similar manner.

01: {3, (1) (0, (x + Ly)} +{(5,(x,y + 1)) (0, (z + L,y + 1))} =
{(0, (z, ) (1, (= + L,y))},

Os: {(1,(x+1L,9)}+{(5,(2,9)) (5, (z,y + 1)) (4, (z + L,y + 1))} =
{2, (z+1,9)},

O10: {(v,( +1,9))} «{(t, (2,9)) (s, (z,y + 1)) (u, (2 + L,y + 1))} =
{(f2, (z + 1L,9))}

The substitutions 07, g, 6y, and 61¢ are responsible for signal propaga-
tion through the initial loop and a finished one. The regular internal sheath
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Figure 3. Substitution templates: 1 — auxiliary internal sheath element, 2 — reg-
ular internal sheath element, 3 — branch signal and external sheath element, 4 —
growth signal, 5 — building component, () — quiscent state

state 2 is used for changing the direction of signal propagation. The sub-
stitution 6;; is responsible for signal propagation through the constructing
arm for which the external sheath state 3 is used. The substitutions 6,2,
013, 014, and 015 are responsible for the growth of a new loop which goes on
with an auxiliary internal sheath state to be equal to 1. The substitutions
016, 017, and 615 are responsible for signal propagation through a loop un-
der construction and that proceeds also with the auxiliary internal sheath
state 1. The substitution 6; starts to build a new loop with inserting an
auxiliary internal sheath element into the center of a new loop as the first
component of the loop. The substitution 8, partially removes a bridge be-
tween the loops. The substitution f3 inserts the branch signal for growing
the constructing arm and removes fully the bridge between the old loop and
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the new one. The substitution 84 replaces the regular internal sheath state
2 for the auxiliary internal sheath state 1. The substitutions 65 and g build
the new constructing arm.

The self-replication process to be governed by the PSA is shown in Fig-
ure 4, the quiescent state designated by 0 is represented by a blank space in
this figure.

The expressive capabilities of the PSA enable one to reduce the num-
ber of states from 9 to 6 and the number of the transition rules from 52
to 18, which is the least number of transition rules for many known self-
replicating loops [13]. Note, that introduction of the sheath states into the
self-replicating loop does not result in increased complexity of the algorithm.
And moreover, we do not know a self-replicating loop which would have a
number of transition rules to be equal to or less than 18.
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